证明e∧x x∧(2n 1)=0有唯一的实根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:04:13
猜想:f(n)=2^n用Cauchy法证明:首先对于正整数n有f(n)=f(1)^n=2^nf(0)=f(0)^2,则f(0)=0或1若f(0)=0则f(n)=f(n+0)=f(n)f(0)=0与f(
Dim随机字符Dimx(6)字符集="ABCDEF0123456789"字符数量=Len(字符集)i=0For6Call得到随机字符()x(i)=随机字符i=i+1Nextsr=x(0)&x(1)&"
f1=2,f2=f(1+1)=f1*f1=2*2=4f(n+1)=fn*f1=2fn即f(n+1)/f(n)=2,可以得出fn=2^n(n属于n+)再问:如何证明再答:很容易证明啊,根据已知条件有:f
两个方程的判别式的值△1=m1²-4n1,△2=m2²-4n2所以△1+△2=m1²+m2²-4(n1+n2)=m1²+m2²-2m1m2=
首先,题目的条件漏了一个“X、Y独立”.按P{X+Y=z}=P{X=k,Y=z-k}(对k求和)展开可以做,但是需要用到组合数学的公式,比较麻烦.最快的方法:把X写成,X=X1+X2+.+Xn1,每个
两组物品,一组n1个,一组n2个,从两组中一共取出n个方法1:C(n1+n2,n)方法2:第一组取0个,第二组取n个;第一组取1个,第二组取n-1个----------第一组取k个,第二组取n-k个-
(A-ε,A+ε)与(B-ε,B+ε)分别是A,B的ε领域,如果A不等于B,那么肯定当ε足够小的时候是不相交的.那么xn就不可能同时存在于这两个集合.
反证法.假设两个方程都没实根,则delta1=m1^2-4n1
ac+bd+ce再问:哪个?前一个还是后一个?再答:第一个再问:那第二个呢?再答:第二个是根号下a平方加b平方加c平方乘再答:根号下再答:e平方加d平方加f平方再答:不是,f变成c
简单啊,n1=11,n2=8.你自己算算看嘛!“^”这个符号的意思是乘方,可以化解写成:(n1+n2)(n1-n2-2)=19这个式子很容易拆分的.代入11和8就可以了
是ln2还是in2?再问:是In2再答:因为4>e>2=>ln2>ln2/ln4=1/2=>ln2>1/2一因为e>2=>e^2>4=>0
f(n1+n2)=f(n1)f(n2),又f(2)=4f(2)=f(1+1)=[f(1)]^2f(n)>0f(1)=2f(2)=4f(3)=f(1+2)=f(1)f(2)=8f(4)=f(1+3)=f
n2=++n1先作n1=++n1,此时n1=n1+1=2+1=3,再作n2=n1=3n1=n2++先作n1=n2=3,再作n2=n2++=n2+1=3+1=4执行后n1=3,n2=4
f(n)=2^nf(n)=f(n-1)*f(1)=f(n-2)*f(1)*f(1)=f(1)*f(1)*……*f(1)一共有n个=【f(1)】^n=2^n
提示哪里就是哪里出错了你调用函数fft1没有往里面传递m但是你函数里面用到m了m没定义再问:那怎么加到里面啊???再答:这函数你写的我怎么知道怎么加到里面如果不是你写的看是不是抄错了,或者把m换成n试
由于方程组是非齐次的它的解等于它本身的一个解加上它的齐次方程组的解它的齐次方程组的解直接用n2-n3就得到了也就是(1,6,-1)T
因为A^2+4A+4E=0所以(A+2E)^2=0所以A的特征值只能是-2.又由于A是实对称矩阵(可对角化)所以存在可逆矩阵P满足P^-1AP=diag(-2,-2,...,-2)=-2E所以A=P(
E,I,J,K,L,M,N,O,P通过节点连接定义一个单元,最多能使用8个节点编号I,J,K,L,M,N,O,P表示节点的编号e,m1,n1,k1,表示通过节点编号m1,n1,k1三个节点建立了一个单
f(0+0)=f(0)f(0)f(0)=1f(1+11)=f(1)*f(1)f(2)=4f(3)=f(1+2)=2*4=8同理f(4)=16(2)猜测f(n)=2的n次方根据f(1)=2.成立令f(n