证明f(x)={x*sin1 x }
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:38:18
设0<x1<x2,则f(x2)-f(x1)=(1/x2+2)-(1/x1+2)=1/x2-1/x1=(x1-x2)/(x1x2)∵x1<x2x1,x2>0∴f(x2)-f(x1)<0∴f(x2)<f(
f(x+1)=f(x)-f(x-1)f(x+2)=f(x+1)-f(x)=f(x)-f(x-1)-f(x)=-f(x-1)f(x+3)=f(x+2)-f(x+1)=-f(x-1)-f(x)+f(x-1
当x≥1,f(x)=(x+1)lnx-x+1,f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0,所以f(x)在[1,+oo)上递增,
证明:∵f(x)=x+1x,∴f′(x)=1-1x2=x2−1x2,又∵x∈(0,1),∵0<x2<1,∴f′(x)<0,∴函数f(x)=x+1x在(0,1)上为减函数.
∵f(x)=x+sinx∴f'(x)=1+cosx∵0≤x≤2π,∴-1≤cosx≤1∴0≤1+cosx∴f'(x)≥0f(x)=x+sinx在0≤x≤2π单调递增,因此f(x)=x+sinx在0≤x
g(x)=lnx+根号x-1-3/2(x-1)g(x)=1/x+1/(2√x)-3/2=(1/x)-1+(1/2)(1/√x-1)=(1-x)/x+(1/2)(1-√x)/√x=(1-x)(1/x+(
题目有误,是证明(x-1)f(x)≥0定义域x>0f'(x)=lnx+(x+1)/x-1=lnx+1/xf''(x)=1/x-1/x²=(x-1)/x²f''(x)=0得x=1∴f
证明令x=x/y,y=y∵f(xy)=f(x)+f(y)∴f(x/y*y)=f(x/y)+f(y)f(x)=f(x/y)+f(y)∴f(x/y)=f(x)-f(y)
f(-x)=(-x)²+3|-x|=x²+3|x|=f(x)∴偶
f(-x)=1-(-x)^2/cos(-x)=1-x^2/cosx=f(x)所以得证
我的理解应该是f(x+a)=-f(x-a),证明f(x)是周期函数f(x)=f(x-a+a)=-f(x-a-a)=-f(x-2a)=-f(x-3a+a)=-(-f(x-3a-a))=f(x-4a)所以
命题左=lnx+ln(x+1)=y1;命题右=ln[x(x+1)]=y2;e^y1=e^[lnx+ln(x+1)]=e^(lnx)*e^[ln(x+1)]=x(x+1);e^y2=e^{ln[x(x+
你肯定抄错题了,条件不够.比如f(x)=根号(x),则f'(x)趋于0,但f(x)没有极限.
证明:设∀x1、x2,且0<x1<x2≤2,f(x1)−f(x2)=(x1+4x1)−(x2+4x2)=(x1−x2)+4(x2−x1)x1x2=(x1−x2)(1−4x1x2),∵0<x1≤2,0<
方法:利用给出的等式条件,对等式某一边连续运用两次,即可证出.举例如下:f(x+2)=-f(x)=-[-f(x-2)]=f(x-2)两个括号中的变量相差4,而函数值相等,因此周期为4.其他题目证明类似
设x1、x2∈(1,+∞),且x1<x2,得f(x1)-f(x2)=(x1+1x1)-(x2-1x2)=(x1-x2)+(1x1-1x2)=(x1-x2)(1-1x1x2)∵x1>1,x2>1∴x1x
函数定义域:x≠0;当|x|>1时,显然f(x)=sinx/x≤|sinx/x|
证明:∵f(x+2)=-f(x)∴f(x+4)=f(x+2+2)=-f(x+2)=f(x)∴f(x)是以4为周期的函数.再问:Ϊʲôf��x+2+2��=-f��x+2����再答:f[(x+2)+2
设(f(x)g(x),f(x)+g(x))=d(x)所以d(x)|f(x)g(x),d(x)|f(x)+g(x)因为(f(x),g(x))=1所以由d(x)|f(x)g(x),得到d(x)|f(x)或