证明f(x)^2dx>=(f(x)dx)^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:24:38
∫[0,a][f(x)+f(2a-x)]dx=∫[0,a]f(x)dx+∫[0,a]f(2a-x)dx令t=2a-x,x=2a-t,dx=-dt,x=0时,t=2a,x-a时,t=a因此上式变为=∫[
∫(1,2)f(3-x)dx令t=3-x,则x=3-t,从而dx=-dt从而∫(1,2)f(3-x)dx=∫(2,1)f(t)(-dt)=∫(1,2)f(t)dt==∫(1,2)f(x)dx.
用分部积分法.∫^(0,1)x(1-x)f"(x)dx(u=x(1-x)v'=f''(x)u'=1-2xv=f'(x)=[x(1-x)f'(x)](0,1)-∫^(0,1)(1-2x)f'(x)dx再
左边=∫[-a→a]f(x)dx=∫[-a→0]f(x)dx+∫[0→a]f(x)dx前一个积分换元,令x=-u,则dx=-du,u:a→0=∫[a→0]f(-u)d(-u)+∫[0→a]f(x)dx
积分值=(变量替换x=pi/2-t)积分(0到pi/2)f(cosx)/(f(sinx)+f(cosx)),两者相加(就是两倍的积分值),被积函数是1,故积分值是pi/2,因此原积分值是pi/4
运用简单的分部积分法可解,交换积分次序亦可以
证:注:符号=∫(a,b)表示在[a,b]上的定积分先考察左边:左边令t=cosx,因为x∈[0,π/2],所以t∈[0,1],x=arccost,dx=-dt/√(1-t^2)所以左边=-∫(1,0
左边交换积分顺序得=2积分(从0到a)f(y)dy积分(从0到y)f(x)dx变量x,y互换=2积分(从0到a)f(x)dx积分(从0到x)f(y)dy原式与上式相加得原式=积分(从0到a)f(x)d
∫[0,a]f(x^2)dx=∫[0,a]f((-x)^2)dx=∫[-a,0]f(x^2)dx∫[0,a]f(x^2)dx+∫[-a,0]f(x^2)dx=∫[-a,a]f(x^2)dx得证.
设t=x-π/2左边=∫(-π/2,π/2)f(丨cos(t+π/2)丨)dt=∫(-π/2,π/2)f(丨sint丨)dt因为f(丨sint丨)是偶函数所以=2∫(0,π/2)f(丨sint丨)dt
这是关于积分的第一中值定理:完整叙述为:若函数f(x)、g(x)在区间[a,b]上有界且可积,f(x)连续,g(x)在区间[a,b]内不变号,则在区间[a,b]内至少存在一个数ξ(a<ξ<
用分部积分法.∫^(0,1)x(1-x)f"(x)dx(u=x(1-x)v'=f''(x)u'=1-2xv=f'(x)=[x(1-x)f'(x)](0,1)-∫^(0,1)(1-2x)f'(x)dx再
用分部积分法.∫^(0,1)x(1-x)f"(x)dx(u=x(1-x)v'=f''(x)u'=1-2xv=f'(x)=[x(1-x)f'(x)](0,1)-∫^(0,1)(1-2x)f'(x)dx再
令y=π/2-x,则x=π/2-y∫(π/2~0)f(cosx)dx=∫(0~π/2)f(cos(π/2-y))d(π/2-y)=∫(0~π/2)-f(siny)dy=-∫(0~π/2)f(siny)
由于f(x)在[0,1]内连续,且∫0~1/2f(1-2x)dx可化简为-1/2∫0~1/2f(1-2x)d(1-2x)因为积分的区间是x∈[0,1/2],所以1-2x∈[0,1]这里我们可以把1-2
令y=π/2-x,则x=π/2-y∫(π/2~0)f(cosx)dx=∫(0~π/2)f(cos(π/2-y))d(π/2-y)=∫(0~π/2)-f(siny)dy=-∫(0~π/2)f(siny)
这个不等式的证明方法有很多,比如用二重积分;下面介绍一种利用一元二次方程判别式的方法:
设x=π-y,dx=-dy当x=0,y=π当x=π,y=0∫(0→π)xf(sinx)dx=-∫(π→0)(π-y)f(sin(π-y))dy=π∫(0→π)f(siny)dy-∫(0→π)yf(si
右边=积分(0a)(f(x))dx+积分(0a)(f(-x))dx令t=-xt属于(-a,0)积分(0a)(f(-x))dx=积分(0-a)(f(t))-dt=积分(-a0)(f(t))dt=积分(-