证明u=f(x,y)满足方程ABC都是常数那么偏导也满足方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:12:24
题目应是:对任意a,b∈R,当a不等于b时,都有af(a)+bf(b)>af(b)+bf(a).(1)设a,b时R上任意两个实数,若af(a)+bf(b)>af(b)+bf(a),则af(a)-af(
设函数y=f(x)图象上的任意一点的坐标为(x,f(x)),则(x,f(x))关于点(a,0)对称点的坐标(2a-x,-f(2a-x)),因为f(a+x)+f(a-x)=0,即f(a+x)=-f(a-
设F关于u和v的偏导函数分别记为f'1,f'2,下记f'1(x+z/y)=a,f'2(y+z/x)=b(a和b都是关于x,y,z的表达式)则由F(x+z/y,y+z/x)=0由复合函数偏导法则αF/α
y'=f'(ln(x+√(a+x²)))·ln(x+√(a+x²))‘=f'(ln(x+√(a+x²)))·1/(x+√(a+x²))·(x+√(a+x
cx-az看成u,cy-bz看成v,对Φ(u,v)=0分别对x,y求偏导,自然得到结果,你要是不会对隐函数求导或者不会对函数求偏导,就要去看书补充基础知识,只满足于得到具体某一题的答案对你没有好处抽象
x=rcosθ,y=rsinθσx/σr=cosθ,σy/σr=sinθσf/σr=(σf/σx)(σx/σr)+(σf/σy)(σy/σr).=(σf/σx)cosθ+(σf/σy)sinθ.=[(
f(x)=f(x-a)+f(x+a).得到:f(x+a)=f(x)+f(x+2a).两式相加得f(x-a)+f(x+2a)=0.即:f(x+2a)+f(x+5a)=0.两式相减得f(x-a)=f(x+
f(a+x)=f(a-x)将x换为x+a得f(x+2a)=f(-x)同理得f(x+2b)=f(-x)则f(x+2a)=f(x+2b)再将x换为x-2a得f(x)=f(x+2b-2a)故f(x)是周期为
证:f(a+x)+f(b-x)=c-f(a+x)+1/2c=f(b-x)-1/2c-[f(a+x)-1/2c]=f(b-x)-1/2c下面这一步很关键:令x=y-(a-b)/2,代入上式:-[f(y-
这是抽象函数,一般的处理方法是特殊指法,代值计算.要证偶函数,需从定义出发,最终得出结论:f(x)=f(-x),因不大好证,可通过变形,证出:f(x)-f(-x)=0,或f(x)+f(-x)=2f(x
laplace方程,将直角坐标的微分方程转化为极坐标的微分方程即可再问:没学过啊,能不能用齐次线性微分方程之类的方法做啊!再答:f是函数,ə是求偏导符号直角坐标下的拉普拉斯方程为:(<
设u=x-az,v=y-bz则,原方程写为F(u,v)=0方程F(u,v)=0两端分别对x,y求偏导得ðF/ðx=ðF/ðu*(ðu/ðx+
第一题是用的拉格朗日数乘法计算条件极值.即在条件a=x+y+z下的乘积xyz的极值.设参数为u,构造拉格朗日函数F(x,y,z,u)=xyz+u(x+y+z-a)分别对四元函数求偏导,使其为零,联立方
(u+v)=f(u)f(v),此类函数一般为指数函数模型,y=a^x,g(uv)=g(u)+g(v),此类函数一般为对数函数模型,y=loga*x.由此解得f(x)=9^x,g(x)=log9*x.所
令y/x=ε,z/x=η.F(y/x,z/x)=F(ε,η)=0,记Fx,Fy,Fz分别表示对x,y,z求偏导;Fε,Fη分别表示对ε,η求偏导Fx=Fε*d(y/x)/dx+Fη*d(z/x)/dx
F(x)=sin(3x-45°)=a3x-45°=arcsina3x=arcsina+45°0
用公式法∂z/∂x=-Fx/Fz计算的话得:Fx=cΦ1Fy=cΦ2Fz=Φ1(-a)+Φ2(-b)你:Fx和Fy求错了.
设u=cx-az,v=cy-bz.方程t(cx-az,cy-bz)=0两边对x求偏导数,得ðf/ðu*(c-aðz/ðx)-bðf/ðv*&
1、令s=ax+by,t=cu+dv,则有F(ax+by,cu+dv)=F(s,t)=st=(ax+by)(cu+dv)=ac(xu)+bc(yu)+ad(xv)+bd(yv)=acF(x,u)+bc