PA,PB,OE分别切圆O与A,B,C圆O半径为6,OD=8
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 12:38:38
因为PA、PB、DE分别切圆O于A、B、C所以 PA=PB=10cm AD=CD BE=CE所以 C△PDE=PD+PE+DE=PD+PE+(CD+CE)=(P
证法1:AB·PB-AC·PC=AB·PC-AC·PB(AB+AC)PB=(AB+AC)PCPB=PC;∵PA,PB为切线∴PA=PB=PC;∵AP⊥PC∴∠PAC=∠PCA=45°∠PAB=∠PBA
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
*引理:切线长定理:过定圆外一点向定圆引两条切线,则这两条切线长相等.*引理的证明:运用三角形全等证明,证法略.根据切线长定理,我们有:DC=DA,DE=BE;那么,由以下两组三角形全等:三角形OAD
就是要证△COM∽△POC即证OC^2=OM*OP,又OC=OA,OA^2=OM*OP,得证
分析:由切线长定理知,AE=CE,FB=CF,PA=PB=2,然后根据△PEF的周长公式即可求出其结果.\x0d∵PA、PB分别与⊙O相切于点A、B,\x0d⊙O的切线EF分别交PA、PB于点E、F,
EA=EC,FB=FC,PA=PB=2C△=PE+PF+EF=PE+PF+EC+FC=PE+PF+EA+FB=PA+PB=4
你所问问题是:已知PA,PB分别切圆O于A,B两点,C是弧AB上任一点,过C做圆O的切线分别交PA,PB于D,E.若三角形PDE的周长为12,求PA+PB的长.答PA+PB=12,利用切线定理,知AD
OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
解题要点:连接OA因为PA、PB是⊙O的切线所以OA⊥PA,AB⊥OP所以可证△OAM∽△OPA所以OA/OP=OM/OA由OA=OC得OC/OP=OM/OC而∠COP=∠MOC所以△POC∽△COM
如图示:设OP交AB于点C,则OP⊥AB,且OP平分AB,∴AC=½AB=6在Rt△PAC中,由勾股定理,得PC=√(PA²-AC²)=√[(3√13)²-6&
因为是填空题,我们可以用特例法解题.设MN⊥OP,则MC=NC设OP=2r,则OA=OB=OC=CP=rOA^+AP^=OP^r^+7^=(2r)^=>r=7√3/3显然∠OPA=∠OPB=30°MP
考点:切线长定理.分析:由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为
∠AOB=360-90-90-∠P=130(任意四边形的内角和是360)因为∠BCA所对的圆心角=360-∠AOB则∠BCA=(360-∠AOB)/2=(360-130)/2=115
设DC切圆O于点E,则DA=DE,CB=CEPA=PD+DA=PA+DE,PB=PC+CB=PC+CE△PCD周长为:PC+PD+CE=PD+DE+PC+CE=PA+PB=14再问:为什么da=de,
应该是PAPB分别切圆O,BC为圆o的直径求证AC平行OP证明:连接AB,OC∵∠PAO=∠PBO=90º∴PAOB四点共圆∴∠POB=∠PAB∵∠PAB=∠ACB【弦切角等于弦所对的圆周角
能看清过程么看不清我再写遍.
证明:∵PA、PB分别切⊙O于A、B,∴PA=PB,∠APC=∠BPC.又∵PC=PC,∴△APC≌△BPC.∴AC=BC.
PA,PB分别切圆O,PAO是直角三角形已知圆O的半径为3cm,PO=6cm,PA,PB分别切圆O于A,B,则PA²=PO²-AO²=36-9=27PA=3√3