PA,PB,OE分别切圆O与A,B,C圆O半径为6,OD=8

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 12:38:38
PA、PB、DE分别切圆O于A、B、C ,D在PA上,E在PB上.若PA =10厘米,求三角形PDE的周长.

因为PA、PB、DE分别切圆O于A、B、C所以 PA=PB=10cm AD=CD BE=CE所以 C△PDE=PD+PE+DE=PD+PE+(CD+CE)=(P

如图,PA,PB分别切圆O与AB两点

证法1:AB·PB-AC·PC=AB·PC-AC·PB(AB+AC)PB=(AB+AC)PCPB=PC;∵PA,PB为切线∴PA=PB=PC;∵AP⊥PC∴∠PAC=∠PCA=45°∠PAB=∠PBA

如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

P是圆O外一点,PA,PB分别与圆O切于点A.B点C是AB弧上任意一点,经过点C做圆O的切线,与PA,PB相交于点D,E

*引理:切线长定理:过定圆外一点向定圆引两条切线,则这两条切线长相等.*引理的证明:运用三角形全等证明,证法略.根据切线长定理,我们有:DC=DA,DE=BE;那么,由以下两组三角形全等:三角形OAD

p是圆O外一点,PA ,PB分别切圆O与A,B,OP与AB相交于M,C为弧AB上一点,求证角OPC等于角OCM.

就是要证△COM∽△POC即证OC^2=OM*OP,又OC=OA,OA^2=OM*OP,得证

如图,PA,PB分别与圆O相切于点A、B,圆O的切线EF分别交PA、PB与点E、F,切点C在弧AB上,若PA长为2,则三

分析:由切线长定理知,AE=CE,FB=CF,PA=PB=2,然后根据△PEF的周长公式即可求出其结果.\x0d∵PA、PB分别与⊙O相切于点A、B,\x0d⊙O的切线EF分别交PA、PB于点E、F,

已知PA,PB分别切圆O于A,B两点,C是AB上任一点,过C做圆O的切线分别叫PA,PB于D,E.若三角形PDE的周长为

你所问问题是:已知PA,PB分别切圆O于A,B两点,C是弧AB上任一点,过C做圆O的切线分别交PA,PB于D,E.若三角形PDE的周长为12,求PA+PB的长.答PA+PB=12,利用切线定理,知AD

如图,AC是圆O的直径,PA,PB是圆O的切线,切点分别为A,B.OP与CB有怎样的位置关系

OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图,已知P为圆O外一点,PA.PB分别切圆O于A,B,OP与AB相交与点M,C为AB弧上一点,试说明角OPC=角OCM

解题要点:连接OA因为PA、PB是⊙O的切线所以OA⊥PA,AB⊥OP所以可证△OAM∽△OPA所以OA/OP=OM/OA由OA=OC得OC/OP=OM/OC而∠COP=∠MOC所以△POC∽△COM

PA,PB分别切圆O于点A.B,PA=3倍根号13,AB=12,则四边行OAPB的面积是多少?

如图示:设OP交AB于点C,则OP⊥AB,且OP平分AB,∴AC=½AB=6在Rt△PAC中,由勾股定理,得PC=√(PA²-AC²)=√[(3√13)²-6&

直线与圆的题两道P为圆O外一点,PA、PB分别切圆O于A、B两点,MN是过劣弧AB上一点C的切线,分别交PA于M,交PB

因为是填空题,我们可以用特例法解题.设MN⊥OP,则MC=NC设OP=2r,则OA=OB=OC=CP=rOA^+AP^=OP^r^+7^=(2r)^=>r=7√3/3显然∠OPA=∠OPB=30°MP

例2.如图所示PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D,已知PA=7cm,(1)求△PCD的周长.

考点:切线长定理.分析:由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为

如图,PA,PB分别切圆O与A、B两点,C为劣弧AB上一点,∠P=50°,∠ACB=____.

∠AOB=360-90-90-∠P=130(任意四边形的内角和是360)因为∠BCA所对的圆心角=360-∠AOB则∠BCA=(360-∠AOB)/2=(360-130)/2=115

如图,PA.PB分别切圆o于点A.B,并与圆o的切线DC交于C.D,已知PA=7,则△PCD的周长?

设DC切圆O于点E,则DA=DE,CB=CEPA=PD+DA=PA+DE,PB=PC+CB=PC+CE△PCD周长为:PC+PD+CE=PD+DE+PC+CE=PA+PB=14再问:为什么da=de,

如图PA PB分别切圆O A B BC为圆o的直径 求证AC平行OP

应该是PAPB分别切圆O,BC为圆o的直径求证AC平行OP证明:连接AB,OC∵∠PAO=∠PBO=90º∴PAOB四点共圆∴∠POB=∠PAB∵∠PAB=∠ACB【弦切角等于弦所对的圆周角

如图,PA、PB分别切⊙O于A、B,连接PO与⊙O相交于C,连接AC、BC,求证:AC=BC.

证明:∵PA、PB分别切⊙O于A、B,∴PA=PB,∠APC=∠BPC.又∵PC=PC,∴△APC≌△BPC.∴AC=BC.

如图,已知圆O的半径为3cm,PO=6cm,PA,PB分别切圆O于A,B,则PA=

PA,PB分别切圆O,PAO是直角三角形已知圆O的半径为3cm,PO=6cm,PA,PB分别切圆O于A,B,则PA²=PO²-AO²=36-9=27PA=3√3