p是圆外1点,pa pb切圆o与点abq是优弧

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:39:57
AB是圆o的直径,AC切圆o与点A,且AC=AB,CD交圆o与点P,CO的延长线叫圆o与点F,BP的延长线交AC与E,连

1、证明:∵AB是圆O的直径∴∠APB=90∵PF是圆O的直径∴∠FAP=90∴∠APB+∠FAP=180∴AF//BE2、证明:∵AC切圆O于A∴∠CAB=90∴∠CAP+∠BAP=90∵OA=OP

AB是圆O的直径,点P是AB延长线上的一点,PC切圆O于点C,在射线PA上截取PD=PC,连接CD并延长交与圆O于点E

连结EO、CO.∵PC切⊙O于C,∴∠PCO=90°,∴∠OCE=∠PCO-∠PCD=90°-∠PCD.∵PC=PD,∴∠PCD=∠PDC,∴∠OCE=90°-∠PDC.显然有:∠PDC=∠ODE,∴

如图,P是圆O外一点,PA切圆O于点A,AB是圆O的直径,BC//OP切交圆于点C,请准确判断直线PC与圆O是怎样的位置

连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)

点M(-3,0)N(3,0)B(1,0)圆O与MN相切于点B,过M,N与圆O相切的两直线相交于点P,则P点的轨迹方程为-

P点到M,N的距离差为(1+3)-(3-1)=2=2a,a=1,c=3,所以b=2*根号2,方程为x方/1-y方/8=1,(x>1)

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与

(1)过p做PM垂直bc,PN垂直DC,角PEC=角PBC(PBCE,四点共圆,或者转角也可以)又pn=pm所以三角形pmb全等三角形pne(2)AF+CE=EF三角形cbe逆时针旋转90°,证三角形

正方形ABCD中,点O是对角线AC的中点,P为对角线AC上一动点,过点P作PF⊥DC于点F.如图1,当点P与点O重合时,

连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1

如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,

(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA

如图,圆O是Rt△ABC的外接圆,∠ABC=90度,点P是圆外一点,PA切圆O于点A,且PA=PB(1)求证:PB是圆O

圆心为O连结OP,OB.可得因为是圆的半径,所以OA=OB已知,PA=PB,且共用边OP.得出,三角OPA全等于,三角OPB,推出,角OBP是90度,推出PB是圆O的切线.

已知P是圆O外一点 PB与圆O相交与点A、B PD与圆O相交与点C、D,AB=CD 求证 1 PO平分角BPD 2 PA

(1)证明:作OE⊥AB,OF⊥CD∵AB=CD∴OE=OF【在同圆内,弦相等,弦心距相等】又∵PO=PO∴Rt⊿PEO≌Rt⊿PFO(HL)∴∠EPO=∠FPO即PO平分∠BPD(2)证明:继(1)

已知⊙O的半径为1,点P与圆心O的距离为m,且方程x²-2x+m=0有两个不相等实数根,试确定点P与⊙O的位置

方程有两个不相等的实数根,根据跟的判别式得出,4-4m>0,解得m<1.所以,点P与圆的位置关系是点P在圆O内,

圆与直线的关系如图所示,已知圆O是以数轴的原点O为圆心,半径为1的圆,角AOB=45度,点P在数轴上运动,若过点P且与O

这个……图呢……我自己画了一种情况——【-根号2,+根号2】就是B在x轴上……

设平面内的向量OA=(1,7),OB=(5,1),OM=(2,1),点p是直线OM上的一个动点,且向量PAPB=-8,求

因为O、M、P三点共线,所以可设向量OP=λ*向量OM,则OP=λ(2,1)=(2λ,λ),PA=OA-OP=(1,7)-(2λ,λ)=(1-2λ,7-λ),PB=OB-OP=(5,1)-(2λ,λ)

已知定圆O的半径为2cm,动圆P的半径为1cm.(1)设⊙P与⊙O相切,那么点P与点O之间的距离是多少?

相切分为外切和内切,所以OP=3或5cm.相切时点P可以在距圆心O为5或者3的圆上运动外切4+1=5cm或内切4-1=3cm两圆相切时,

两道不等式的题已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为()已知0第二小题打

已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为(-3+2*根号2)已知0=(1+根号t)^2