sin(x 60°) 2sin(x-60°)-根号3cos(120°-x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:42:47
在mathematica里输入Plot[Sin[x] Sin[x + 2] - Sin[x + 1]Sin[x + 1]

楼上都错了,图像没问题这个表达式实际是个常数,你可以运行TrigReduce[Sin[x]Sin[x+2]-Sin[x+1]^2]看看,结果为1/2(-1+Cos[2])只不过Plot的自动选择坐标系

matlab画y=sin(x)+sin(2*x)+...+sin(20*x)的图像

x=0:0.01:1;y=0;fori=1:20y=y+sin(i*x);endplot(y);

化简(sin^2 x/sin x-cosx)-(sin x+cosx/tan^2 x-1)

tan²-1=sin²x/cos²x-1=(sin²x-cos²x)/cos²x=(sinx+cosx)(sinx-cosx)/cos&su

x*(1+sin^2 x )/sin^2x 不定积分

原式=∫x*(csc^2x+1)=∫x*csc^2x+x(分开积分)前面=-x*cotx+∫cotx=-x*cotx+ln|sinx|后面=1/2x^2记得加C

高一三角函数化简 sin^2(x-30)+sin^2(x+30)-sin^2(x)

sin^2(x-30)+sin^2(x+30)-sin^2(x)=(1-cos(2x-60))/2+(1-cos(2x+60))/2-sin^2x=1-1/2[cos(2x-60)+cos(2x+60

一道三角恒等式证明题请证明sin(x+y)sin(x-y)=sin^2(x)-sin^2(y)

左边=(sinxcosy+cosxsiny)(sinxcosy-cosxsiny)=sin²xcos²y-cos²xsin²y=sin²x(1-sin

泰勒公式的为什么㏑( 1 + sin X ) = sin X - ( sin X )²/2 +(sin X )

你好,第一:首先将㏑(1+X)用麦克劳林公式(泰勒公式的推广)分解开就是X-(X)²/2+(X)³/3-(X)∧4+o(∧4X),第二:将㏑(1+X)中的X换为sinX就ok了,很

为什么|sin(2x+pi)|=|sin(2x)|呢?

sin在(0,PI)是中心对称的.意思是SIN(X+PI)=-SIN(X)加绝对值就相等了.

化简sin(x+60°)+2sin(x-60°)-3

原式=sin(x+60°)-3cos[180°-(x+60°)]+2sin(x-60°)=sin(x+60°)+3cos(x+60°)+2sin(x-60°)=2sin(x+60°+60°)+2sin

化简 cos^2(x)*sin^2(x)-sin^2(x)

=sin^2(x)*[cos^2(x)-1]=-sin^4(x)再答:别忘了负号再问:嗯谢谢

证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+

sinx+siny+sinz-sin(x+y+z)=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]sinx+siny+sinz-sin(x+y+z)=2sin[(x+y)/

化简[1-(sin^4x-sin^2cos^2x+cos^4x)/(sin^2)]+3sin^2x

sin^4x-sin^2xcos^2x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x=(sin^2x+cos^2x)^2-3sin^2xcos^2x

1/sin^2x的不定积分谢谢!(是1/sin x * sin x)

解sin^2x=1/csc^2x∫csc^2xdx=-cotx+c不懂追问再问:为什么是-cot不是cot呢?再答:cot'=-csc^2x这里是正的

已知tan=2,求(cos x+sin x)/(cos x-sin x)+sin^2x

sinx=2cosx,sin^2x=4cos^2xsin^2x=4-4sin^2x,sin^2x=4/5(cosx+sinx)/(cosx-sinx)+sin^2x=(1+tanx)/(1-tanx)

解方程 sin 2x + sin x = 0

sin2x+sinx=02sinxcosx+sinx=0sinx(2cosx+1)=0①党sinx=0x=kπ②党(2cosx+1)=0cosx=-1/2x=kπ/2+π/3

(1-(sin^4x-sin^2xcos^2x+cos^4x)/sin^2x +3sin^2x

sin^4x-sin^2xcos^2x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x=(sin^2x+cos^2x)^2-3sin^2xcos^2x