V是所有n阶实数矩阵按矩阵的加法和数乘作成的线性空间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:52:17
N阶可逆矩阵都能化成单位矩阵所有N阶可逆矩阵都等价对的.两个同型矩阵等价的充分必要条件是它们的秩相同.n阶可逆矩阵的秩都等于n,故它们等价.
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
说实称矩阵吧给比较初等办吧A称L特征值E应特征向量D表示共轭转置(数比L即共轭)AE=LE(1)则D(E)AE=LD(E)E=L|E|(2)(1)求共轭转置D(E)A=D(L)D(E)则D(E)AE=
A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的
A的第i行乘-1等于第i列乘-1,故对角线以外的元素均为0A的第i,j行互换等于第i,j列互换,故对角线上元素相等.
记A=aij用Eij将第i行第j列的元素表示为1,而其余元素为零的矩阵.因A与任何矩阵均可交换,所以必与E可交换.由AEij=EijA得aji=aiji=j=1,2,3,...n及aij=0i不等于j
因为A+A^T是对称矩阵且X^T(A+A^T)X=X^TAX+X^TA^TX=X^TAX+(X^TAX)^T=0所以A+A^T=0所以A^T=-A故A是反对称矩阵.
楼上的想法不对吧,你只说明了矩阵A是一个对角矩阵,并且可能是单位阵的倍数,不能说明A是单位阵,要说明单位阵,除了说明:“正交矩阵表明A^(-1)=A',正定矩阵表明A合同于E,即A=C'EC,所以A^
证:(1)若a∈M,则a为n阶方阵,所以a∈V,所以M是V的子空间,同理可证N是V的子空间.(2)题目出错了!因为M∩N={n阶对角阵}不为0,所以M+N不为直和.且维(M)=维(N)=n*(n+1)
前提是你得知道矩阵通过一系列(有限步)行初等变换可以转化到阶梯型,而对于方阵而言阶梯型一定是上三角阵,所以只要证明那一系列行变换都是三角矩阵就行了.第二类初等变换是对角阵,第三类初等变换是三角矩阵,唯
a)A的特征值时det(A-xE)=0的根,这是一个n阶方程,显然不保证肯定全部时实根b)特例0100c)成立d)b)中的矩阵就是一个反例所以只有c肯定对,其他都不对
记E(ij)是第i行第j列元素为1,其余元素是0的矩阵,则E(ij)+E(ji),1
一个基是diag(1,0,...,0),diag(0,1,0,...0),.,diag(0,0,0,...,1)维数为n
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
∑aii=0∑(aiiajj-aijaji)=0|A|=0A*A降幂A幂零
去看下面的链接
第一行乘以矩阵A加到第二行,行列式变成了一个上三角形形|-BI||0-2B逆|,所以原式=|-B|×|-2B逆|=(-1)^n×|B|×(-2)^n×|B逆|=2^n.请采纳.再问:没看懂。答案是(O
是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.
得到的是行向量再答:按列分块得到的才是列向量