y=log1 2(x^2-3x 2)的单调递增区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:44:06
解题思路:由完全平方公式可求解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea
要使函数有意义:log12(x2-1)≥0,即:log12(x2-1)≥log121可得 0<x2-1≤1解得:x∈[-2,-1)∪(1,2]故答案为:[-2,-1)∪(1,2]
令t=x2-1>0,求得x>1,或x<-1,故函数的定义域为{x|x>1,或x<-1},且y=log12t,故本题即求函数t在定义域内的减区间.再利用二次函数的性质可得函数t在定义域内的减区间为(-∞
log9x=log3(根号x)方程转化为log12(根号x+四次根号x)=log3(根号x)/2然后换元,换底即可
由x2-3x+2>0得x<1或x>2,当x∈(-∞,1)时,f(x)=x2-3x+2单调递减,而0<12<1,由复合函数单调性可知y=log0.5(x2-3x+2)在(-∞,1)上是单调递增的,在(2
原式=x+2y-x2+y=x2+3y,当x=4,y=19时,原式=42+3×19=1+1=2.
y=x2+2x+1/(x2+2x+3)=(x+1)2/(x2+2x+3)当分母一定时,分子越小越好(x2+2x+3)=(x+1)2+2永远大于零当(x+1)2越小越好而X=-1时y=x2+2x+1/(
∵3x-a>0,∴x>a3.∴函数y=log12(3x-a)的定义域为(a3,+∞),∴a3=23,解得a=2故答案为:2.
由-x2+6x-8>0,得2<x<4,设函数y=log12(−x2+6x−8)=log12t,t=-x2+6x-8,则抛物线t=-x2+6x-8的对称轴方程是t=3.∴在抛物线t=-x2+6x-8上,
∵f(x)=log12(x2+2x+4),∴f(-2)=log12(4-4+4)=log124,f(-3)=log12(9-8+4)=log125,∵y=log12x是减函数,∴log124>log1
由2x^2-3x+4>=0得x∈R,由x^2-2x>=0得x=2,因此函数定义域为(-∞,0]U[2,+∞),1、在区间(-∞,0]上,由于2x^2-3x+4=2(x-3/4)^2+23/8,开口向上
由x−1>02−x≥0,解得1<x≤2,∴函数f(x)的定义域为(1,2].又∵函数y1=log12(x-1)和y2=2−x在(1,2]上都是减函数,∴当x=2时,f(x)有最小值,f(2)=log1
要使y=log12(x+3)(2−x)有意义,需(x+3)(2-x)>0即(x+3)(x-2)<0,解得-3<x<2;由ex-1≥1,得x-1≥0,即x≥1.所以A={x|-3<x<2};B={x|x
令t=x2-2x+5,由x2-2x+5=(x-1)2+4≥4,知原函数的定义域为R,t≥4,则log12t≤log124=−2,所以原函数的值域为(-∞,-2].故答案为B.
y=(x^2-2x-3)/2x^2+2x+1,x^2-2x-3=2yx^2+2yx+y(2y-1)x^2+(2y+2)x+y+3=0(2y+2)^2-4(2y-1)(y+3)>=0-4=
令t=x2-5x+6=(x-2)(x-3)>0,可得x<2,或x>3,故函数y=log12(x2-5x+6)的定义域为(-∞,2)∪(3,+∞).本题即求函数t在定义域(-∞,2)∪(3,+∞)上的增
x^2+2x+3>=2这个给出的条件化简后就是(x+1)^2>=0,任何实数x都符合这个条件.可以令x^2+2x+3=m,则m>=2,0=-13/22>2-13/m>=-9/2能否给点悬赏分.
∵t=x2-6x+17=(x-3)2+8≥8∴内层函数的值域变[8,+∞) y=log12t在[8,+∞)是减函数, 故y≤log128=-3∴函数y=log12(x2
令u=|x-3|,则在(-∞,3)上u为x的减函数,在(3,+∞)上u为x的增函数.又∵0<12<1,y=log12u是减函数∴在区间(3,+∞)上,y为x的减函数.故答案为:(3,+∞)
∵函数y=log12(x2-3x+2),∴x2-3x+2>0,解得x<1,或x>2.∵抛物线t=x2-3x+2开口向上,对称轴方程为x=32,∴由复合函数的单调性的性质,知:函数y=log12(x2-