y=x y y x通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:48:19
y"+y'=x的通解,

特征方程为a^2+a=0,解得a=0或a=-1,因此齐次方程的通解为y=C1+C2e^(-x).再求非齐次方程的一个特解.设特解为y=ax^2+bx+c,y‘=2ax+b,y''=2a,代入得2ax+

y"-y=e^x的通解

∵y"-y=0的特征方程是r²-1=0,则r=±1∴y"-y=0的通解是y=C1e^x+C2e^(-x)(C1,C2是积分常数)∵设原方程的一个解为y=Axe^x代入原方程得2Ae^x=e^

求y''-y=x的通解

∵齐次方程y''-y'=0的特征方程是r2-r=0则特征根是r1=0,r2=1∴齐次方程的通解是y=(C1x+C2)e^x(C1,C2是积分常数)设原微分方程的一个特解是y=Ax2+Bx代入原微分方程

y′=-x/y 通解

y'=-x/ydy/dx=-x/yydy=-xdxy²/2+C1=-x²/2+C2化简可得:y²+x²+C=0y=√(-x²+C)

求助微分方程y"=y"'的通解

再答:前面打掉了一行,令y“=p

y''-y=e^|x|的通解

解微分方程的时候不要在意这种在常数上的一点点区别,这样来想,你是解得y=c1*e^x+c2*e^(-x)+1/2*x*e^x那么如果令c1=d1-1/2,c2=d2+1/2,就得到y=(d1-1/2)

求y''-y=sinx的通解

∵齐次方程y''-y=0的特征方程是r²-1=0,则r=±1∴齐次方程y''-y=0的通解是y=C1e^t+C2e^(-t)(C1,C2是积分常数)∵设原方程的一个解为y=Asinx+Bco

微分方程 y”-y=0的通解

特征函数r²-1=0r=1或-1那么y=C1e^x+C2e^(-x)C1C2常数

微分方程y'+y=0的通解

dy/dx=-ydy/y=-dx积分:ln|y|=-x+C1得y=C/e^x

y''''+y''+y=0 通解

其次方程解设为e^(ax)代入有a^4+a^2+1=0=>a^2=e^(j2π/3)或e^(j4π/3)推出次方程的四个解为e^(jπ/3)e^(j2π/3)e^(j4π/3)e^(j5π/3)故原方

y’+y=e^-x的通解

对应齐次方程是y'+y=0其通解是y=Ce^(-x),C是任意常数设方程的一个特解是y*=axe^(-x),代入方程得ae^(-x)-axe^(-x)+axe^(-x)=e^(-x)ae^(-x)=e

y''-y=0的通解是什么?

y''-y=0特征方程是r²-r=0特征根是r=0,r=1故方程的通解是y=C1+C2e^x,C1,C2是任意常数

2y+y=0的通解

等于0(什么叫通解?)

已知微分方程y''=y,求通解

我觉得你们都在浪费楼主的时间,就让我来解答这个问题吧:这是个不显含x的二阶方程.令p=y'那么原方程变成:pdp/dy=y把它们分开分别积分:pdp=ydyp^2/2=y^2+C1即:p^2=y^2+

y''-y=x求通解

特征方程r²-1=0r=±1y1=c1*e^xy2=c2*e^(-x)设特解yp=ax+byp'=a,yp''=0,代入方程0-(ax+b)=x-a=1=>a=-1b=0yp=-x通解为y=

y''=y'+x,求通解,

这题是y''-y'=f(x)的形式(常系数非齐次线性微分方程)要先解y''-y'=0的通解特征方程r^2-r=0解得,特征值r1=1,r2=0所以y''-y'=0的通解为Y1=C1e^(1*x)+C2

y'-y=x的通解

y”=y'+xy”-y'=x齐次的特征方程r^2-r=0r=1,r=0齐次通解y=C1e^x+C2设特解为y=ax^2+bx+cy'=2ax+by''=2a代入得2a-(2ax+b)=x2a=-1,2