{ln(1 x)-X} cosX -1的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:50:47
lim(sin²x-x²cosx))/(x²ln(1+x)arcsinx) 当x趋近于0时

运用洛必塔法则,等价无穷小求解再问:可以详细点吗方法我也懂再答:没有,我公式早忘完了,只是试着做了一下,反正就这两个法则,我是做不出来,嘿嘿

x趋向于0,lim[x*ln(1+3x)]/(1-cosx)

在x趋向于0时,ln(1+3x)趋向于3x,1-cosx趋向于0.5x的平方,所以答案为6

lim(x→0)(cosx)^(1/ln(1+x^2))

设f(x)=(cosx)^(1/ln(1+x^2)),lnf(x)=ln(cosx)/ln(1+x^2)x→0,ln(cosx)=ln[1+(cosx-1]cosx-1-x^2/2ln(1+x^2)x

求极限lim(x→0)][ln(1+2x^2)+n sinx]/(1-cosx)

如果是xsinx极限是6如果就是nn=0时有极限4n非0时极限无穷大

lim(x→0)(ln(1+x^2)/(sec-cosx))

运用lim(t--0)的等价无穷小:ln(1+t)~tsint~t就可以了看图:

求 lim ln(1+x+2x^2)+ln(1-x+x^2)/secx-cosx

=limcosx·ln[(1+x+2x^2)·(1-x+x^2)]/(1-cos²x)=1×limln[1+(x+2x^2)+(-x+x^2)+(x+2x^2)·(-x+x^2)]/(sin

lim(x->0)[cosx-e^(-x^2/2)]/[x^2[x+ln(1-x)]]

原式=lim{x->0}[1-x^2/2+x^4/24+o(x^4)-(1-x^2/2+x^4/8+o(x^4))]/[x^2(x-x+x^2/2+o(x^2)]=lim{x->0}[-x^4/12+

lim[ln(1+x^2)]/(secx-cosx) x->0

哥们这个还是1做这种题第一步先清除清零因子cos0=1第二部等价无穷小代换可化为x^2/x^2=1

lim(x→0)(x^2+cosx-2)/(x^3)*ln(1+x)怎么算

lim(x→0)(x^2+cosx-2)/(x^3)*ln(1+x)=lim(x→0)(0+1-2)*(ln(1+x)/(x^3))=lim(x→0)-(ln(1+x)/(x^3))=im(x→0)-

limx趋向0[ln(1+x^2)/secx-cosx]

secx-cosx=1/cosx-cosx=(1-cos^2x)/cosx=(1+cosx)(1-cosx)/cosx所以原式=limcosxln(1+x^2)(1+cosx)(1-cosx)x趋于0

lim x趋于0 (sinx+x^2sin1/x)/[(1+cosx)ln(1+x)]

1+cosx显然是趋向2的(不必解释了吧)所以2×原极限=sinx/ln(1+x)+(x^2sin1/x)/ln(1+x)而x、sinx和ln(1+x)为等价无穷小量所以2×原极限=1+xsin1/x

lim(x趋于0)(1-cosx)/[ln(1+x)(e^x-1)]

运用等价无穷小:1-cosx~1/2x^2,ln(1+x)~x,e^x-1)~xlim(x→0)(1-cosx)/[ln(1+x)(e^x-1)]=lim(x→0)1/2x^2/x^2=1/2

limx→0 x-ln(1+x)/1-cosx

等于1,用罗比达法则求第一步:等于[1-1/(1+x)]/sinx的极限,第二步就可以得到结果了

求极限(e的3x次方-e的x方)ln(1+x)/1-cosx

lim【x→0】(e^3x-e^x)ln(1+x)/(1-cox)=lim【x→0】[】(e^3x-e^x)]x/(x²/2)=2lim【x→0】[(e^3x-e^x)]/x=2lim【x→

lim (cosx)^ln(1/1+x^2)怎么算

lim[x→0](cosx)^ln[1/(1+x²)]=(cos0)^ln[1/(1+0)]=1^ln1=1^0=1

1、lim ln(1+x+2x^2)+ln(1-x+x^2)/secx-cosx

答:第一种方法:洛比达法则第二种方法,恒等式变形,用等价无穷小.1(2);2(18×12)

lim(1-cosx)/(e^x-1)ln(1-x),x->0

x→0时:1-cosx与2[sin(x/2)]^2是等价无穷小,也就是与[(x)^2]/2是等价无穷小;e^2-1与x是等价无穷小;ln(1-x)与-x是等价无穷小.所以原式={[(x)^2]/2}/

∫cosX*ln(1+X^2)dx怎么求?

1/2xe^(-iX)log(X^2+1)+1/2xe^(iX)log(X^2+1)+constant,integral_0^picos(X)log(1+X^2)dX~-1.6829842329702