|y-x^2|dxdy,D为-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:58:04
原式=∫[0,2π]dθ∫[0,1]√(1-r²)/(1+r²)rdr(极坐标变换)=π∫[0,1]√(1-r²)/(1+r²)d(r²)令u=r
极坐标标∫∫√(R²-x²-y²)dxdy=∫∫r√(R²-r²)drdθ=∫[-π/2→π/2]dθ∫[0→Rcosθ]r√(R²-r
{x=rcosθ、y=rsinθe²≤x²+y²≤e⁴→e²≤r²≤e⁴→e≤r≤e²∫∫_[D]ln(x²
T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤
首先计算∫∫xdxdy,由于被积函数是关于x的奇函数,而积分区域关于y轴对称,所以∫∫xdxdy=0,原积分=∫∫(x^2+y^2)dxdy,用极坐标计算,=∫dθ∫r^3dr,(r积分限0到1,θ积
这题的积分区域---圆域的圆心为(1/2,1/2),半径为(√2)/2因为圆心非原点,所以无论用直角坐标还是极坐标,上下限都不好确定.所以应想到把圆域平移到原点处,即用坐标变换.但二重积分的坐标变换涉
原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^
∫(r^2/r^2+1)dr=∫dr-∫1/(r^2+1)dr再问:∫1/(r^2+1)dr怎么求再答:arctanr
D:x²+y²≤2x,y≥0=>x²-2x+1+y²≤1,y≥0=>(x-1)²+y²≤1,y≥0即以(1,0)为圆心,半径为1的x轴上方的
记O(0,0),A(π/2,0),B(π/2,π/2),C(0,π/2).则积分域D:为正方形OABC,连接AC,则在D1:△OAC内,x+y
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
x=pcosθ,y=psinθ代入x²+y²=2x,得p=2cosθ即D:{0≤p≤2cosθ{-π/2≤θ≤π/2所以原式=∫∫f(pcosθ,psinθ)pdpdθ=∫(-π/
x=rcost,y=rsint,代入方程得r^2
x^2+y^2=x+y化成标准式(x-1/2)^2+(y-1/2)^2=1/2x=1/2+rcosαy=1/2+rsinαα∈[0,2π]r∈[0,√2/2]∫∫(x+y)dxdy=∫∫(1+rcos
∫∫(D)(x²+y)dxdy=∫(1→2)dx∫(1/x→x)(x²+y)dy=∫(1→2)[x²y+y²/2]|(1/x→x)dx=∫(1→2)[x