∫dx∫e---y--2dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 14:36:48
dy/dx=(1+x+x²)'*e^x+(1+x+x²)*(e^x)'=(1+2x)e^x+(1+x+x²)e^x=(2+3x+x²)e^x
原式=∫dy∫e^(-y²/2)dx(作积分顺序变换)=∫(1-y²)e^(-y²/2)dy=∫e^(-y²/2)dy-∫y²e^(-y²/
题目应该是e^(-y^2)交换积分次序:=∫(0,1)dy∫(0,y)e^(-y^2)dx=∫(0,1)ye^(-y^2)dy=1/2*∫(0,1)e^(-y^2)dy^2=1/2*(1-1/e)
(dy/dx)=e^(x+y)(dy/dx)=e^x*e^y分离变量dy/e^y=e^xdx两边积分-e^(-y)=e^x+C1则-y=ln(C-e^x)整理得y=-ln(C-e^x)
两边对x求到得:e^(y^2)*2yy'=lncosx,故:y'=(lncosx)/e^(y^2)*2y
把积分区域D画图,改换积分次序:∫(0~1)dx∫(x~1)e^(-y^2)dy=∫(0~1)dy∫(0~y)e^(-y^2)dx=∫(0~1)ye^(-y^2)dy被积函数的原函数是-1/2e^(-
对方程取导数y+x(dy/dx)+(dy/dx)=0(dy/dx)(x+1)=-ydy/dx=(-y)/(x+1)
∫dy∫e^(-x^2)dx=-∫dy∫e^(-x^2)dx=-∫dx∫e^(-x^2)dy=-∫e^(-x^2)dx∫dy=-∫xe^(-x^2)dx=1/2e^(-x^2)=1/2(e^(-1)-
∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y
交换积分次序:∫(0,2)dx∫(x,2)e^(-y²)dy=∫(0,2)dy∫(0,y)e^(-y²)dx=∫(0,2)ye^(-y²)dy=(1/2)∫(0,2)e^
首先对于这样的第二类线性积分,参数方程很重要x=2(cost)^2y=2sint*costπ/4≤t≤π/2然后就用曲线积分公式你可以用这个思路再问:用格林公式怎么做
不能先对x积分,需交换积分次序:D:y≤x≤√y,1/2≤y≤1分成两个区域:D1:1/2≤y≤x,1/2≤x≤√2/2D2:x²≤y≤x,√2/2≤x≤1I=∫∫D1e^(y/x)dydx
三种方法1式中同时对x求导-(y+xy‘)cosxy+2yy'=0解出y’2式中同时取微分d{sin(xy)+y^2-e^2}=dsin(xy)+dy^2-de^2=-cosxydxy+2ydy=-c
利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy首先需要构造封闭曲线.∫(x沿半圆周y=√2x-x^2从2积到0)(e^xsiny-y)dx+(e^xco
dy/dx=-[e^(y^2)*e^x]/y-ye^(-y^2)dy=e^xdx∫-ye^(-y^2)dy=∫e^xdx1/2*∫e^(-y^2)d(-y^2)=∫e^xdxe^(-y^2)=2e^x