∫∫|(x² y²)-1|dydx D={(x,y)|0≤x≤1 0≤y≤1}

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:50:55
设函数y=y(x)连续,且y(x)=∫(上x下0) y(t)dt+x+1,求y(x)

y(x)=∫(0,x)y(t)dt+x+1,y(0)=1两边求导得y'=y+1即dy/dx=y+1分离变量dy/(y+1)=dx两边积分∫dy/(y+1)=∫dx得ln(y+1)=x+C1y+1=Ce

求下列函数的值域: (1)y=1-x²/1+x² (2)y=-x²-2x+3 (3)y=x+1/x (4)y=x+√1-

解题思路:用x2的取值范围、二次函数的的性质、均值不等式,换元法求函数的值域解题过程:

求二重积分∫∫[(x+y)ln(1+y/x)]/[根号下(1-x-y)] dxdy 积分区域是x

看边界线,原区域的边界必定对应新坐标系中区域的边界线.x+y=1==>u=1y轴(x=0)==>v=0x轴(y=0)==>u-v=0所以,新区域的边界线为u=1,v=0,u-v=0在新坐标系(u横v纵

计算 ∫∫ln(e+x^2+y^2)do ,其中D=(x,y)|X^2+y^2《1

再问:极径r积分区域为什么是0

变换积分次序∫(0,1)dy∫(-y,1+y^2)f(x,y)dx

原式=∫(-1,0)dx∫(-x,1)f(x,y)dy+∫(0,1)dx∫(0,1)f(x,y)dy+∫(1,2)dx∫(√(x-1),1)f(x,y)dy.

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

1、x(x-y)(x+y)-x(x+y)^2

1)x(x-y)(x+y)-x(x+y)^2=x((x-y)(x+y)-(x+y)^2)=x(x^2-y^2-x^2-2xy-y^2)=x(-2xy-2y^2)=-2xy(x+y)2)(2a+b)(2

∫∫(y/x)^2dxdy,D为曲线y=1/x,y=x,y=2所围成的区域计算二重积分

原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^

∫∫D|1-x²-y²|dxdy,其中D={(x,y)|x²+y²≤x,y≥0}

∵在区域D={(x,y)|x²+y²≤x,y≥0}中,1-x²-y²≥0∴∫∫|1-x²-y²|dxdy=∫∫(1-x²-y

∫∫(D)arctan y/x dxdy.D:1≤x^2+y^2≤4,y≥0,y≤x

x=rcosθy=rsinθ∫∫(D)arctany/xdxdy=∫∫(D')arctan(sinθ/cosθ)rdrdθ其中D':1

已知x+y=0,x+13y=1,求x²+12xy+13y²的值.

解题思路::∵x+y=0,x+13y=1,解得x=1/12,y=-1/12∴x²+12xy+13y²=1/144-1/12+13/144=14/144-1/12=2/144=1/72解题过程:已知x+

设y=y(x)是由y^2(x-y)=x^2所确定的隐函数,求∫(1/y^2)dx

.y/x=ty=txy=xtdy/dx=t+t'xdy=(t+t'x)dxy^2(x-y)=x^2t^2(x-tx)=1x=1/[t^2(1-t)]y=1/[t(1-t)]1/y^2=t^2(1-t)

将∫(0,1)dx∫(0,1-x)dy∫(0,x+y)f(x,y,z)dz按y,z,x的次序积分为?

按y,z,x的次序积分为∫(0,1)dx∫(0,x)dz∫(0,z-x)f(x,y,z)dy.如果你指的是从左至右是y,z,x的次序,则为∫(0,1)dy∫(0,y)dz∫(0,z-y)f(x,y,z

y(x)为连续函数,∫(上线x,下线0)[(x+1)t-x]y(t)dt=7x,求y(x)

 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

计算二重积分 ∫∫x(1+yf(x^2+y^2))dxdy,积分区间是由y=x^3,y=1,x=-1围成

积分区域是图中橙色部分与蓝色部分合起来,现作辅助线y=-x³,将区域分为橙色与蓝色两部分∫∫x(1+yf(x²+y²))dxdy=∫∫xdxdy+∫∫xyf(x²

∫( e^x sin y- y )dx + (e^x cos y - 1)dy,是(2,0)的半圆周y=√2x-x^2

利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy首先需要构造封闭曲线.∫(x沿半圆周y=√2x-x^2从2积到0)(e^xsiny-y)dx+(e^xco

∫∫(x+y)dxdy,D:x^2+y^2

x^2+y^2=x+y化成标准式(x-1/2)^2+(y-1/2)^2=1/2x=1/2+rcosαy=1/2+rsinαα∈[0,2π]r∈[0,√2/2]∫∫(x+y)dxdy=∫∫(1+rcos