△ABC是等边三角形,P是内部任意一点,求证PA PB PC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 12:19:29
如图: ABCP的面积=S△ABC+S△APC=S△ABP+S△BCP∴AC*h*1/2+AC*PF*1/2=AB*PD*1/2+BC*PE*1/2 &nb
如图,把△ABP绕点A逆时针旋转60°得到△ACD,则AD=PA=3,CD=PB=4,∴△APD是等边三角形,∴PD=PA=3,∵PD2+CD2=32+42=25,PC2=52=25,∴PD2+CD2
证明:过P向BC方向作BP垂线PD,且使PD=PC,连接BD、CD.∠BPC=150°故DPC=150°-90°=60°PD=PC故△CPD为等边三角形∠PCA=∠DCB故△PCA≌△DCBAP=BD
∵△ABP绕点A逆时针旋转后,能与△ACP'重合∴∠PAP'=∠BAC=60°,AP=AP'∴△APP'是正三角形,∴PP'=AP=3
(1)证明:因为△PAB是等边三角形,∠PAC=∠PBC=90°,PC=PC所以Rt△PBC≌Rt△PAC,可得AC=BC.如图,取AB中点D,连接PD、CD,则PD⊥AB,CD⊥AB,所以AB⊥平面
任意一点直接取中点,9再问:为什么是9,可以解释一下吗?再答:你任意取一点,延长PD,PE,PF和三边交上,直接按三角形关系看图就行,答案是6,不是9
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
∵△ABC是等边三角形,∴∠BAC=60°∵△ABP绕A点逆时针旋转后与△ACP′重合,∴AP=AP′,∠BAP=∠CAP′,∴∠BAC=∠BAP+∠CAP=∠CAP+∠CAP′=∠PAP′=60°,
因为三角形ABP绕点A逆时针旋转后,能与三角形ACQ重合,所以三角形ABP与三角形ACQ全等所以AP=AQ=3因为三角形ABC是等边三角形所以∠BAC=∠ABC=60`又因为∠PAC+∠BAP=∠AB
(1)取AC中点为M,连接PM,DM∵D是AB中点∴DM//BC∵BC⊥AC∴AC⊥DM∵ΔPAC是等边三角形,M是AC中点∴AC⊥PM,又PM∩DM=M∴AC⊥平面PDM∵PD在平面PDM内∴AC⊥
∵到三角形三边距离相等的点是三角形三条角平分线的交点,∴点P应是△ABC的三条角平分线的交点.故选B.
1、三角形abc是直角三角形,所以AB=AC,∠BAC=∠ACB=60°,∵AE=DC,∴△ABE全等与△ADC,∴∠DAC=∠ABE,∴∠ABE+∠BAE=60°∴∠BPQ=60°,则∠PBQ=30
(1)当P为△ABC内一点时连接P与各顶点得△PAB,△PAC,△PBC.此3个△的面积和等于△ABC的面积;而△PAB=1/2*a*h1△PAC=1/2*a*h2△PBC=1/2*a*h3△ABC=
∴⊿ABC是等边三角形,∴∠ACB=60º,又D为AC的中点,∴BD⊥AC,∴∠DBC=30º,又CE=CD,∴∠CDE=∠E,又∠CDE+∠E=60º,∴∠E=30
∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.又∵AE=CD,∴△ABE≌△ACD,∴∠ABE=∠DAC.又∵∠BPQ=∠ABE+∠BAD,∴∠BPQ=∠DAE+∠BAD=60°,∴在
是不是这个啊,将△APC绕A点逆时针转60度,点C与点B重合,点P移动到P',连接PP',∵△AP'B是△APC旋转得到的,∴AP=AP',∠APC=∠AP'B
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
正三角隐含条件我就不说了CD等于EC可知角CDE等于角CED等于30°(等边对等角)又由正三角性质得角DBC等于30°(三线合一)BD=DE(等角对等边)
类似题目,仅供参考:已知P为正△ABC内一点,∠APB=110°,∠APC=125°求证:以AP,BP,CP为边可以构成一个三角形,并确定所构成的三角形的各内角的度数证明要点:将△APB绕点A旋转60