作业帮 > 数学 > 作业

已知曲面z=1-x2-y2上的点P处的切平面平行于平面2x+2y+z=1,求点P处的切平面方程.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 17:09:00
已知曲面z=1-x2-y2上的点P处的切平面平行于平面2x+2y+z=1,求点P处的切平面方程.
设切点为P(x0,y0,z0),故
曲面在切点处的切平面的法向量为

n={2x0,2y0,−1}
又由于

n∥(2,2,1),且切点P在曲面上


2x0
2=
2y0
2=
−1
1
x02+y02+z0=1
解得:x0=y0=-1,z0=-1
∴点P处的切平面方程为2(x+1)+2(y+1)+(z+1)=0
即2x+2y+z+5=0