f(x)在x=0的领域内有二阶导数,又x→0时lim((sinx+xf(x))\x3)=0,求f(0),f'(0),f'
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 07:39:09
f(x)在x=0的领域内有二阶导数,又x→0时lim((sinx+xf(x))\x3)=0,求f(0),f'(0),f''(0)
sinx=x+(1/3!)x³+0(x³)
f(x)=f(0)+f′(0)x+f″(0)x²+0(x³)
xf(x)=f(0)x+f′(0)x²+f″(0)x³+0(x³)
sinx+xf(x)=(1+f(0))x+f′(0)x²+[(1/3!)+f″(0)]x³+0(x³)
lim((sinx+xf(x))\x3)=0,
1+f(0)=0 f′(0)=0 (1/3!)+f″(0)=0
f(0)=-1 f′(0)=0 f″(0)=-(1/3!)
再问: f(x)和sinx的麦克劳林公式写错了 f(x)=f(0) f′(0)x (f″(0)/2)x² 0(x³) sinx=x-(1/3!)x^3 还有为什么1 f(0)=0 f′(0)=0 (1/3!) f″(0)=0 答案是f(0)=-1 f′(0)=0 f″(0)=1/3
f(x)=f(0)+f′(0)x+f″(0)x²+0(x³)
xf(x)=f(0)x+f′(0)x²+f″(0)x³+0(x³)
sinx+xf(x)=(1+f(0))x+f′(0)x²+[(1/3!)+f″(0)]x³+0(x³)
lim((sinx+xf(x))\x3)=0,
1+f(0)=0 f′(0)=0 (1/3!)+f″(0)=0
f(0)=-1 f′(0)=0 f″(0)=-(1/3!)
再问: f(x)和sinx的麦克劳林公式写错了 f(x)=f(0) f′(0)x (f″(0)/2)x² 0(x³) sinx=x-(1/3!)x^3 还有为什么1 f(0)=0 f′(0)=0 (1/3!) f″(0)=0 答案是f(0)=-1 f′(0)=0 f″(0)=1/3
f(x)在x=0的领域内有二阶导数,又x→0时lim((sinx+xf(x))\x3)=1/2,求f(0),f'(0),
f(x)在x=0的领域内有二阶导数,又x→0时lim((sinx+xf(x))\x3)=0,求f(0),f'(0),f'
求lim(x→0)[(xf'(x))/(2f(x))]^(1/x),其中f(x)在x=0点某邻域内有三阶连续导数,f(0
已知lim(x→0)(sinx+xf(x))/x^3=1/3,求f(0),f'(0),f"(0)
设 f(x)在x=0存在二阶导数,lim(x→0)[xf(x)-ln(x+1)]/x^3求f(0)f'(0)f''(0)
x趋于0,lim x-o ( sin6x+xf(x))/x3=0 ,lim x-o (6+f(x))/x2=?
F(x)等于xF(t)在[0,X ]上的定积分,求F(x)导数
一道极限题目lim(x→0)sinx+xf(x)/x^3=1/2 求f(0),f`(0),f``(0)
已知函数f(x)在x=1处的导数为1,则 lim f(1-x)-f(1+x) /3x x→0
高数导数极限题函数f(x)在点x=0连续lim(x→0)[sinx/x^2+f(x)/x]=2求f’(0)题是不是错了
设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x
设函数f(x)有连续的导数,并且f(0)=f'(0)=1,求lim(x-->0){[f(sinx)-1]/Inf(x)}