概率排列问题假定一组n个物体,其中n1个是第一种类型(相互间无差异),n2个是第二种类型,.,nk个是第k种类型,当然n
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 22:42:35
概率排列问题
假定一组n个物体,其中n1个是第一种类型(相互间无差异),n2个是第二种类型,.,nk个是第k种类型,当然n=n1+n2+.+nk,这n个物体的不同排列是?求推导过程.
N种不同的安排乘以第一类n1!乘以第二类n2!乘以第k类nk!等于n!
这里面用到了排列和乘法原理的n!*n2!*n3!再乘以N我就有点蒙了,
N*(n1!*n2!*n3!)=n!
5个红弹子,2个白弹子,3个蓝弹子排成一行,如果同色的弹子相互没有区别。求全部可能的安排数。
假定存在N中不同的安排,则N乘以(a)5个红弹子自身的排列方式(b)2个白弹子的排列数,(c)3个蓝弹子的排列数(也就是用5!乘N),我们就得到10个各不相同的弹子的排列数10!因此
(5!3)N=10!N=10!/(5!3)
太抽象了,是不是就用到了乘法原理?做这件事分3部,第一步有5!种不同的方法,第二部有2!种不同的方法,第三部有3!中不同的方法,完成这件事有5!种不同的方法,我是这么理解的,这个N还是不懂?
假定一组n个物体,其中n1个是第一种类型(相互间无差异),n2个是第二种类型,.,nk个是第k种类型,当然n=n1+n2+.+nk,这n个物体的不同排列是?求推导过程.
N种不同的安排乘以第一类n1!乘以第二类n2!乘以第k类nk!等于n!
这里面用到了排列和乘法原理的n!*n2!*n3!再乘以N我就有点蒙了,
N*(n1!*n2!*n3!)=n!
5个红弹子,2个白弹子,3个蓝弹子排成一行,如果同色的弹子相互没有区别。求全部可能的安排数。
假定存在N中不同的安排,则N乘以(a)5个红弹子自身的排列方式(b)2个白弹子的排列数,(c)3个蓝弹子的排列数(也就是用5!乘N),我们就得到10个各不相同的弹子的排列数10!因此
(5!3)N=10!N=10!/(5!3)
太抽象了,是不是就用到了乘法原理?做这件事分3部,第一步有5!种不同的方法,第二部有2!种不同的方法,第三部有3!中不同的方法,完成这件事有5!种不同的方法,我是这么理解的,这个N还是不懂?
N指的的是同类物体认为是一样时这n个物体的排列数,很明显和将n个物体看成不同的排列数n!是不同的.
我们想办法将N种情况和n!种情况对应上.
方法就是给各类物体编号,如第一种类型中n1个物体是相同的,编号的方法就是n1!种,
编完号就变成不同的物体的,
总的编号方法为n1!n2!.nk!
所以N种情况中每一种情形可和n!中n1!n2!.nk!个排列对应上.
N(n1!n2!.nk!)=n!
N=n!/(n1!n2!.nk!)
我们想办法将N种情况和n!种情况对应上.
方法就是给各类物体编号,如第一种类型中n1个物体是相同的,编号的方法就是n1!种,
编完号就变成不同的物体的,
总的编号方法为n1!n2!.nk!
所以N种情况中每一种情形可和n!中n1!n2!.nk!个排列对应上.
N(n1!n2!.nk!)=n!
N=n!/(n1!n2!.nk!)
概率排列问题假定一组n个物体,其中n1个是第一种类型(相互间无差异),n2个是第二种类型,.,nk个是第k种类型,当然n
K个整数(n1,n2,n3.nk)相加等于n,所有ni*(ni-1)/2求和的最大值是多少?
6|(n+n1+n2+.nk),证明6|(n^3+n1^3+n2.nk^3)
有若干个数,第一个数为n1,第二个数为n2,第三个数为n3.,第k个记为nk,若n1=1/2,从第二个数起,每个数都等于
实变函数-元素(n1,n2,...,nk)是由k个正整数所组成,证明其全体成一可数集
一个含有n对同源染色体的精原细胞产生4个精子,2种类型.有2n(这是n次方)种可能 .
一个线性代数的问题已知n*n阶矩阵A,和n*1阶列向量X.若齐次数线性方程组AX=0的基础解系为N1,N2……Nk,且n
已知一棵度为k的树中有n1个度为1的结点,n2个度为2的结点,…,nk个度为k的结点,问该树中有多少个叶子...
已知一个n位数是由1,2,3,...n(n小于等于9的正整数),这样的n个数字的一种排列,而它的前k个数字组成一个能被k
一组按规律排列的式子:-b2/a,b5/a2,-b8/a3,b11/a4,其中第9个式子是____,第n个式子是____
一组按规律排列的数:1,4,9,16……,其中第7个是49,第N个是()?
一个组合恒等式的证明 Σ(k=0,n)C(n1,k)C(n2,n-k)=C(n1+n2,n)