请问:f(x,y,z)=0 f(x,y,z) 分别对 x ,y ,z 的偏导数等于什么,为什么?其中f(x,y,z)=0
请问:f(x,y,z)=0 f(x,y,z) 分别对 x ,y ,z 的偏导数等于什么,为什么?其中f(x,y,z)=0
已知函数z=z(x,y)由方程F(x+z/y,y+z/x)=0所确定,其中F具有一阶连续偏导数.
设G(x+z*y^(-1),y+z*x^(-1))=0确定了z=f(x,y)证明:x*z对x的偏导数+y*z对y的偏导数
z=y/f(x^2+y^2)的偏导数,分别对x、y求偏导
设方程f(z/x,y/z)=0确定了函数z=z(x,y)且f具有连续偏导数求z对x的偏导和z对y的偏导
z=f(x,y)对x,y求偏导数都等于0表示什么含义?
f(x,y,z,w)=x*(x+y)*(x+y+z)*(x+y+z+w)
方程f(y/z,z/x)=0确定z是x,y的函数,f有连续的偏导数,且f'v(u,v)≠0.
设函数z(x,y)由方程z-f(2x,x+y,yz)=0确定,其中f具有连续的偏导数,求dz
设z=z(x,y)由方程F(x+y,x+z)=z确定,其中F具有一阶连续偏导数,求dz
设z=z(x,y)由方程F(z/x,z/y)=x确定,其中F具有一阶连续偏导数,求dz
微积分隐函数问题设z=z(x,y)是由方程F(x-z,y-z)=0所确定的隐函数,其中F有一阶连续偏导数,且F'1+F'