设a+b>0a≠b,n∈N,n≥2,用数学归纳法证明(a+b/2)^n<(a^n+b^n)/2
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 17:04:28
设a+b>0a≠b,n∈N,n≥2,用数学归纳法证明(a+b/2)^n<(a^n+b^n)/2
∵a+b>0a≠b
第一步,当n=1时,不等式显然成立.
第二步,假设n=k时,不等式成立.即有(a^k+b^k)/2>[(a+b/2)]^k
那么,两边同时乘以(a+b/2),可得
(a+b/2)(a^k+b^k)/2>([(a+b/2)]^(k+1)
左边=[a^(k+1)+ab^k+a^kb/2+b^(k+1)/2]/2
>[a^(k+1)+b^(k+1)]/2
即n=k+1时成立.
第三步,由一和二可知,n=1时成立,则n=2时成立,则n=3时成立……类推,对任意n不等式都成立
第一步,当n=1时,不等式显然成立.
第二步,假设n=k时,不等式成立.即有(a^k+b^k)/2>[(a+b/2)]^k
那么,两边同时乘以(a+b/2),可得
(a+b/2)(a^k+b^k)/2>([(a+b/2)]^(k+1)
左边=[a^(k+1)+ab^k+a^kb/2+b^(k+1)/2]/2
>[a^(k+1)+b^(k+1)]/2
即n=k+1时成立.
第三步,由一和二可知,n=1时成立,则n=2时成立,则n=3时成立……类推,对任意n不等式都成立
设a+b>0a≠b,n∈N,n≥2,用数学归纳法证明(a+b/2)^n<(a^n+b^n)/2
已知a>0,b>0,n>1,n∈N*.用数学归纳法证明:a
(数学归纳法)若a.b.c三个正数成等差数列,公差d≠0,自然数n≥2,求证a^n +c^n >2 b^n
设An=2ˆn,Bn=n²+1,比较A B大小,并用数学归纳法证明
用数学归纳法证明:(a^n+b^n)/2>=[(a+b/2)]^n,a,b为非负实数,假设n=k时命题成立证明n=k+1
1.S=a^n+a^(n-1)b+a^(n-2)b^2+……+ab^(n-1)+b^n(n∈N*,ab≠0)
已知Un=a^n+a^(n-1)b+a^(n-2)b^2+...+ab^(n-1)+b^n(n∈N*,a>0,b>0),
如果A>B>0,试证明a的1/n次方大于b的1/n次方.(n∈N,n≥2)
设b>0,数列{an}满足:a[1]=b,a[n]=nba[n-1]/(a[n-1]+2n-2)(n≥2).
设a>b>0,n>1,证明nb^(n-1) (a-b)< a^n -b ^n< na^(n-1)(a-b)
已知cn=a^n+a^(n-1)b+a^(n-2)b^2...+b^n(n∈N*,a>0,b>0)
利用等比数列求和公式证明:(a-b)(a^n+a^(n-1)b+a^(n-2)b^2+……+b^n)=a^(n+1)-b