作业帮 > 数学 > 作业

已知a,b,c,x都是非零实数,且(a^2+b^2)*x^2-2b(a+c)x+b^2+c^2=0

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 17:32:11
已知a,b,c,x都是非零实数,且(a^2+b^2)*x^2-2b(a+c)x+b^2+c^2=0
求证:a,b,c成等比数列,且公比是x
将已知等式展开:
a^2x^2+b^2x^2-2abx-2bcx+b^2+c^2=0
(a^2x^2-2abx+b^2)+(b^2x^2-2bcx+c^2)=0
(ax-b)^2+(bx-c)^2=0
由于平方式都是大于或等于0,为使上式成立,只能是:
(ax-b)^2=0,得ax-b=0,即ax=b,解得x=b/a;
(bx-c)^2=0,得bx-c=0,即bx=c,解得x=c/b;
所以a,b,c成等比数列