作业帮 > 数学 > 作业

在斜三角形ABC中,角A,B,C所对的边分别为a,b,c,若tanC/tanA+tanC/tanB=1,则(a2+b2)

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:06:35
在斜三角形ABC中,角A,B,C所对的边分别为a,b,c,若tanC/tanA+tanC/tanB=1,则(a2+b2)/c2=
tanC/tanA+tanC/tanB=1
tanBtanC+tanAtanC=tanAtanB
tanC(tanA+tanB)=tanAtanB
sinC/cosC (sinA/cosA+sinB/cosB)=sinAsinB/cosAcosB
sinC (sinAcosB+cosAsinB)=sinAsinBcosC
sinC sin(A+B)=sinAsinBcosC
sinC sin(180°-C)=sinAsinBcosC
sin^2C=sinAsinBcosC
sinC/sinA * sinC/sinB = cosC
c/a * c/b = (a^2+b^2-c^2)/(2ab)
2c^2 = a^2+b^2-c^2
a^2+b^2 = 3c^2
(a^2+b^2)/c^2 =3