已知等差数列a1=3/2,公差为1,设bn=a*2的n次方+b*an-75(a,b属于自然数),且数列{bn}的前项和T
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 15:31:57
已知等差数列a1=3/2,公差为1,设bn=a*2的n次方+b*an-75(a,b属于自然数),且数列{bn}的前项和Tn的最小值是T6求a,b的值.
an=3/2+(n-1)
=n+1/2
bn=a*2^n+b*an-75
=a*2^n+b(n+1/2)-75
=a*2^n+b*n+b/2-75
Tn=[a*2+b*1+b/2-75]+[a*2^2+b*2+b/2-75]+……+[a*2^(n-2)+b*(n-2)+b/2-75]+[a*2^(n-1)+b*(n-1)+b/2-75]+[a*2^n+b*n+b/2-75]
=a[2+2^2+……+2^(n-2)+2^(n-1)+2^n]+b[1+2+3+……+(n-2)+(n-1)+n]+nb/2-75n
=2a(2^n-1)+n(n+1)b/2+nb/2-75n
=a*2^(n+1)+(b/2)n^2+(b-75)n-2a
Tn=a*2^(n+1)+(b/2)n^2+(b-75)n-2a
T6=a*2^7+18b+6b-450-2a
=126a+24b-450
a*2^(n+1)+(b/2)n^2+(b-75)n-2a≥126a+24b-450
=n+1/2
bn=a*2^n+b*an-75
=a*2^n+b(n+1/2)-75
=a*2^n+b*n+b/2-75
Tn=[a*2+b*1+b/2-75]+[a*2^2+b*2+b/2-75]+……+[a*2^(n-2)+b*(n-2)+b/2-75]+[a*2^(n-1)+b*(n-1)+b/2-75]+[a*2^n+b*n+b/2-75]
=a[2+2^2+……+2^(n-2)+2^(n-1)+2^n]+b[1+2+3+……+(n-2)+(n-1)+n]+nb/2-75n
=2a(2^n-1)+n(n+1)b/2+nb/2-75n
=a*2^(n+1)+(b/2)n^2+(b-75)n-2a
Tn=a*2^(n+1)+(b/2)n^2+(b-75)n-2a
T6=a*2^7+18b+6b-450-2a
=126a+24b-450
a*2^(n+1)+(b/2)n^2+(b-75)n-2a≥126a+24b-450
已知等差数列a1=3/2,公差为1,设bn=a*2的n次方+b*an-75(a,b属于自然数),且数列{bn}的前项和T
已知数列{An}与{Bn}都是公差不为零的等差数列,且limAn/Bn=2,求lim(A1+A2+……+An)/(n*B
已知数列{an}为等差数列,且a1=2,a1+a2+a3=12 令bn=3^a n,求数列{bn}的前n项和
设数列an前n项和Sn已知a1=a2=1 bn=nSn+(n+2)an数列bn公差为d的等差数列n属于N...
【紧急--高一数学】已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an
(高二数学)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an
已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
1.已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an.
数列{an},{bn}的各项均为正数,a1=1,b1=2,且对于任意自然数n, lg bn、lg a(n+1)、lg b
已知a,b,为常数,且an=3(n-1)次方-2a(n-1)(1)设bn=an/3的n次方-1/5,证明数列bn为等比数
已知数列{an}是首项为1,公差为2的等差数列.且bn=2的an次方(n属于N+)
等差数列{an}的公差为-2,且a1,a3,a4成等比数列.设bn=2/n(12-an)(n∈N*),求数列{bn}的前