设函数f(x)=xe∧x,g(x)=ax∧2+x.若当x≥0时 恒有f(x)≥g(x),求a的取值范围
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:36:19
设函数f(x)=xe∧x,g(x)=ax∧2+x.若当x≥0时 恒有f(x)≥g(x),求a的取值范围
即ax²≤xe^x-x,在x>=0时恒成立.
x=0时,成立
x>0时即 a≤e^x/x-1/x=(e^x-1)/x 恒成立
设g(x) =(e^x-1)/x (x>0)
g'(x)=(xe^x-e^x)/x²+1/x²=[e^x(x-1)+1]/x²
h(x)=e^x(x-1)+1
h'(x)=e^x(x-1)+e^x=xe^x>0恒成立
∴h(x)为增函数
∴h(x)>h(0)=0
即g'(x)>0恒成立
∴g(x)为增函数
lim(x-->0)(e^x-1)/x
=lim(x-->0)e^x
=1
x-->0时,g(x)-->1
∴g(x)>1
∴a的取值范围是a≤1
x=0时,成立
x>0时即 a≤e^x/x-1/x=(e^x-1)/x 恒成立
设g(x) =(e^x-1)/x (x>0)
g'(x)=(xe^x-e^x)/x²+1/x²=[e^x(x-1)+1]/x²
h(x)=e^x(x-1)+1
h'(x)=e^x(x-1)+e^x=xe^x>0恒成立
∴h(x)为增函数
∴h(x)>h(0)=0
即g'(x)>0恒成立
∴g(x)为增函数
lim(x-->0)(e^x-1)/x
=lim(x-->0)e^x
=1
x-->0时,g(x)-->1
∴g(x)>1
∴a的取值范围是a≤1
设函数f(x)=xe∧x,g(x)=ax∧2+x.若当x≥0时 恒有f(x)≥g(x),求a的取值范围
设函数f(x)=x(e^x-1)-ax^2若当x≥o时f(x)≥o,求a的取值范围
设函数f(x)=xlnx+4 若当x≥1时,恒有f(x)≤ax²-ax+4,求a的取值范围
设函数f(x)=xlnx+4 若当x≥1时,恒有f(x)≤ax²-ax+4,求a的取值范围
设函数f(x)=e^x-1-x-ax^2 若当x>=0时,f(x)>=0,求a的取值范围
2.已知函数f(x)=x²+ax+3,当 x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.
设函数fx=e的x次方-1-x-ax 若当x≥0,f(x)≥0,求a 的取值范围
设函数fx=xe^x,gx=ax^2+x,若x>等于0时.恒有fx>等于gx.求a的取值范围
已知函数f(x)=e^x+ax,g(x)=e^xlnx.(2),若对于任意实属x≥0,f(x)>0恒成立,求a的取值范围
已知函数f(x)=x^2-ax,g(x)=lnx,若f(x)≥g(x)对于定义域内的x恒成立,求实数a的取值范围.
已知函数f(x)=x^2+ax+3,当x∈[-2,2]时,f(x)≥a恒成立,求a的取值范围
函数f(x)=x^2+ax+3(1)当x∈R时,求使f(x)≥a恒成立时a的取值范围