作业帮 > 数学 > 作业

如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 07:40:38
如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:四边形GEHF是平行四边形.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∴∠GBE=∠HDF.
又∵AG=CH,
∴BG=DH.
又∵BE=DF,
∴△GBE≌△HDF.
∴GE=HF,∠GEB=∠HFD.
∴∠GEF=∠HFE.
∴GE∥HF.
∴四边形GEHF是平行四边形.