一般地,我们可以用配方求抛物线y=ax^2 + bx + c(a≠0)的顶点与对称轴. y=ax^2 + bx + c
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:59:53
一般地,我们可以用配方求抛物线y=ax^2 + bx + c(a≠0)的顶点与对称轴. y=ax^2 + bx + c =a[x+(b/2a)]^2 +
一般地,我们可以用配方求抛物线y=ax^2 + bx + c(a≠0)的顶点与对称轴.
y=ax^2 + bx + c
=a[x+(b/2a)]^2 + (4ac-b^2)/4a,
不是等于(b^2-4ac)/4a^2 ?
一般地,我们可以用配方求抛物线y=ax^2 + bx + c(a≠0)的顶点与对称轴.
y=ax^2 + bx + c
=a[x+(b/2a)]^2 + (4ac-b^2)/4a,
不是等于(b^2-4ac)/4a^2 ?
y=ax^2+bx+c
=a(x^2+bx/a)+c
=a[x^2+bx/a+b^2/(2a)^2]-b^2/(4a)+c
=a[x+b/(2a)]^2-b^2/(4a)+c
=a[x+(b/2a)]^2 + (4ac-b^2)/4a
步骤:1.把二次项的系数提出
2.将括号内的项进行配方
3.去括号,合并
=a(x^2+bx/a)+c
=a[x^2+bx/a+b^2/(2a)^2]-b^2/(4a)+c
=a[x+b/(2a)]^2-b^2/(4a)+c
=a[x+(b/2a)]^2 + (4ac-b^2)/4a
步骤:1.把二次项的系数提出
2.将括号内的项进行配方
3.去括号,合并
抛物线y=ax^2+bx+c与x轴交与A(-2,0),对称轴是直线x=2,顶点C到x轴的距离是12,求此抛物线的解析式.
如果a>0,抛物线y=ax^2+bx+c的顶点在什么位置?
抛物线y=ax的平方+bx+c与x轴交于点A(-3,0),对称轴为直线x=-1,顶点C的纵坐标为-2,求此抛物线的解析式
抛物线y=ax^2+bx+c (a不等于0) 与y=ax^2形状相同,对称轴是x=2,顶点在y=0.5x+3上,求此函数
已知抛物线y=ax^2+bx+c(a≠0)图像的对称轴为x=2,
抛物线y=ax²+bx+c的对称轴是直线x=1,与x轴交于A(-2,0),顶点到x轴的距离为2,求抛物线的表达
抛物线y=ax²+bx+c的对称轴是直线x=1,与x轴交于A(-2,0),顶点到x轴的距离为2,求抛物线的表达
二次函数y= ax²+bx +c的图像如图所示,求﹙1﹚抛物线y= ax²+bx +c的对称轴﹔﹙2
结合二次函数 y=ax^2+bx+c的图象 求:1.抛物线y=ax^+bx+c的对称轴
抛物线y=ax^2+bx+c与x轴交点是(-1,0)(3,0)求对称轴
抛物线y=ax^2+bx+c(a≠0)的顶点为(-2,1),且ax^2+bx+c=0两根之差的绝对值等于2,求抛物线的函
二次函数y=ax^+bx+c经过点A(1,3),B(2,4),C(3,3),那么抛物线y=ax^+bx+c的顶点坐标?