抛物线y=ax^2+bx+c与x轴交与A(-2,0),对称轴是直线x=2,顶点C到x轴的距离是12,求此抛物线的解析式.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 17:19:50
抛物线y=ax^2+bx+c与x轴交与A(-2,0),对称轴是直线x=2,顶点C到x轴的距离是12,求此抛物线的解析式.
y = ax² + bx + c
= a(x² + bx/a) + c
= a[x² + bx/a + (b/2a)²] - a*(b/2a)² + c
= a(x + b/2a)² - b²/4a + c
= a(x + b/2a)² + (4ac - b²)/4a
顶点是[- b/2a,(4ac - b²)/4a]
对称轴x = 2 - b/2a = 2,4a = - b
(4ac - b²)/4a = 12
(- bc - b²)/(- b) = b + c = 12 ...*
当x = - 2,y = 0
4a - 2b + c = 0
c - 3b = 0 ...*
解*得:b = 3,c = 9
a = - 3/4
f(x) = (- 3/4)x² + 3x + 9
= a(x² + bx/a) + c
= a[x² + bx/a + (b/2a)²] - a*(b/2a)² + c
= a(x + b/2a)² - b²/4a + c
= a(x + b/2a)² + (4ac - b²)/4a
顶点是[- b/2a,(4ac - b²)/4a]
对称轴x = 2 - b/2a = 2,4a = - b
(4ac - b²)/4a = 12
(- bc - b²)/(- b) = b + c = 12 ...*
当x = - 2,y = 0
4a - 2b + c = 0
c - 3b = 0 ...*
解*得:b = 3,c = 9
a = - 3/4
f(x) = (- 3/4)x² + 3x + 9
抛物线y=ax^2+bx+c与x轴交与A(-2,0),对称轴是直线x=2,顶点C到x轴的距离是12,求此抛物线的解析式.
抛物线y=ax2+bx+c与x轴交于A(-2,0),对称轴是直线x=2,顶点C到x轴的距离是12,求此抛物线的解析式
抛物线y=ax2+bx+c,与x轴交于点A(-3,0),对称轴为x=-1,顶点C到x轴的距离为2,求此抛物线的解析式.
抛物线y=ax²+bx+c的对称轴是直线x=1,与x轴交于A(-2,0),顶点到x轴的距离为2,求抛物线的表达
抛物线y=ax²+bx+c的对称轴是直线x=1,与x轴交于A(-2,0),顶点到x轴的距离为2,求抛物线的表达
抛物线y=ax的平方+bx+c与x轴交于点A(-3,0),对称轴为直线x=-1,顶点C的纵坐标为-2,求此抛物线的解析式
已知抛物线y=ax平方+bx+c与x轴交于A(-5,0),B(-1,0)顶点C到x轴的距离为2,求此抛物线的解析式
求救解.抛物线y等于ax平方加bx加c与y轴交于点a(负3,0),对称轴x等于负一顶点c的x轴的距离为2,求此抛物线的表
已知抛物线y=ax^2+bx+c的顶点是(-1,-4),且与x轴交与A,B(1,0)两点,交y轴于点C.1.求此抛物线解
已知抛物线与x轴交于点A(-3,0),对称轴是直线x=-1,顶点到x轴顶点距离是2,球抛物线的解析式.
已知抛物线与x轴交于点A(-3,0)对称轴是直线x=-1顶点到xz轴的距离是2求抛物线的解析式
抛物线y=ax^2+bx+c的对称轴为x=2,顶点在直线y=-x上,且它与y轴的交点的纵坐标为-2,求此函数解析式