作业帮 > 数学 > 作业

ΔABC中,acosC,-bcosB,ccosA成等差数列,求B的大小

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 00:18:38
ΔABC中,acosC,-bcosB,ccosA成等差数列,求B的大小
因为acosC、-bcosB、ccosA成等差数列,
所以,acosC+ccosA=-2bcosB
根据正弦定理:a=2RsinA,b=2RsinB,c=2RsinC,代入上式并消去2R得:
sinAcosC+sinCcosA=-2sinBcosB
即:sin(A+C)=-2sinBcosB
因为A+C+B=180,所以A+C=180-B,因此由诱导公式上式又可以化为:
sinB=-2sinBcosB
因为sinB不等于0,所以两边约去sinB,得:
1=-2cosB
即:cosB=-1/2
因为角B是ΔABC的内角,所以0