已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与双曲线x^2/m^2-y^2/n^2=1(m>0,n>0),其
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 05:45:58
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与双曲线x^2/m^2-y^2/n^2=1(m>0,n>0),其中a^2-b^2=m^2+n^2,P为它们的公共点.(1)用b,n表示角F1PF2 (2)用b,n表示三角形F1PF2的面积
a^2-b^2=m^2+n^2
可知它们有共同的焦点F1、F2
设 a^2-b^2=m^2+n^2=c^2
由定义知:
|PF1|+|PF2|=2a,|PF1|-|PF2|=2m
平方相加得:|PF1|^2+|PF2|^2=2(a^2+m^2)
平方相减得:|PF1||PF2|=a^2-m^2=b^2+n^2
由余弦定理得
cos(角F1PF2)=(|PF1|^2+|PF2|^2-4c^2)/(2|PF1||PF2|)
=(a^2+m^2-2c^2)/(b^2+n^2)
=(b^2-n^2)/(b^2+n^2)
角F1PF2=arccos[(b^2-n^2)/(b^2+n^2)]
2.sin(角F1PF2)=2bn/(b^2+n^2)
S=1/2|PF1||PF2|sin角F1PF2
=2bn
你再仔细核对一下,方法是这样
可知它们有共同的焦点F1、F2
设 a^2-b^2=m^2+n^2=c^2
由定义知:
|PF1|+|PF2|=2a,|PF1|-|PF2|=2m
平方相加得:|PF1|^2+|PF2|^2=2(a^2+m^2)
平方相减得:|PF1||PF2|=a^2-m^2=b^2+n^2
由余弦定理得
cos(角F1PF2)=(|PF1|^2+|PF2|^2-4c^2)/(2|PF1||PF2|)
=(a^2+m^2-2c^2)/(b^2+n^2)
=(b^2-n^2)/(b^2+n^2)
角F1PF2=arccos[(b^2-n^2)/(b^2+n^2)]
2.sin(角F1PF2)=2bn/(b^2+n^2)
S=1/2|PF1||PF2|sin角F1PF2
=2bn
你再仔细核对一下,方法是这样
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与双曲线x^2/m^2-y^2/n^2=1(m>0,n>0),其
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与双曲线x^2/m^2-y^2/m^2=1(m>0,n>0)有相
若椭圆x^2/m+y^2/n=1(m>n>0)和双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)有相同的焦点F
若双曲线x^2/m-y^2/n=1(m>0,n>0)和椭圆x^2/a+y^2/b=1(a>b>o)有相同的焦点F1,F2
已知直线x+y=1与椭圆x^2/a^2+y^2/b^2=1(a>b>0)交与m,n两点 且以M,N为直径的圆经过原点.
如图,已知椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)和双曲线(x^2/m^2)-(y^2/n^2)=1
一个椭圆与x轴y轴分别交于A(2,0),B(0,1),一条直线y=kx(k>0)与椭圆交于M,N两点,求由A,B,M,N
已知直线l:6x-5y-28=0与椭圆x^2/a^2+y^2/b^2=1(a>b>0)交于M,N两点,B是椭圆的上顶点,
已知直线y=kx+b(k≠0)与双曲线y=k^2/x交于点M(m,-1),N(n,2)
1.若点A(1,m)B(2,n)在双曲线y=-2/x图像上,则m与n得大小关系得_______.
已知A,B是椭圆x^2/a^2+y^2/b^2=1(a>b>0)长轴的两个顶点,M,N是椭圆上关于x轴对称的亮点,直线A
双曲线y^2/b^2--x^2/a^2=1的一条渐近线与椭圆x^2/a^2+y^2/b^2=1交于点M,N,则MN=