设3维向量a1=(1,0,0)a2=(1,1,0)a3=(1,1,1),证明:对任意的向量b=(a,b,c),都可以由a
设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa1=a2+a3 证明a1 a2 a3
设a1,a2,a3均为3维列向量,矩阵A=(a1,a2,a3)并且|A|=1,B=(a1+a2+a3,a1+2a2+4a
a1=(1,2,3,4),a2+a3=(0,1,2,3)a1,a2,a3是四元线性方程组AX=b的三个解向量,r(A)=
设a1,a2,a3,a4为四维向量,A=(a1,a2,a3,a4)已知通解X=k(1,0,1,0)^T ,求向量组的a1
线性代数小问题设n维向量a1,a2,a3满足2a1-a2+3a3=0,对于任意n维向量b,向量组l1b+a1,l2b+a
设向量a1=(2,4,0,2),a2=(2,7,1,3),a3=(0,1,-1,a),b=(3,10,b,4)
设向量A=(1,2),向量B=(-2,-3),又向量C=2向量A+向量B,向量D=向量A+M*向量B,若向量C与向量D的
设向量a的模=1,向量b的模=2,向量c的模=3,且向量a*向量b=0,则(向量a+2*向量b)*向量c的最小值?
三阶方阵A=(a1,a2 a3),其中aj=(1,2,3)为A的列向量,若B=|a1+2a2,a2+3a3,a3|=8,
设3阶方阵A=(a1,a2,a3),其中ai(i=1,2,3)为A的列向量,若|B|=|(a1+2a2,a2,a3)|=
设A为3阶矩阵,a1,a2分别为A的属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,证明a1,a2,a3线
向量组:a1=(1,-1,0),a2=(2,1,3),a3=(3,1,2)证明a1,a2,a3是3维向量空间R3的子空间