已知数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)/2a(n+1)(n∈正整数)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 19:33:30
已知数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)/2a(n+1)(n∈正整数)
(1)求数列{an}的通项公式an
(2)求数列{n²an}的前n项和Tn
(3)若存在n∈正整数,使得an≤(n+1)x,求实数x的最小值
(1)求数列{an}的通项公式an
(2)求数列{n²an}的前n项和Tn
(3)若存在n∈正整数,使得an≤(n+1)x,求实数x的最小值
(1) Sn = n+1/2 an+1 ——①
Sn-1 = n/2 an ——②
①-②
an = n+1/2 an+1 - n/2 an
n+2/2 an = n+1/2 an+1
an+1 / an = n+2 / n+1
用累乘法:
a2 / a1 = 3/2
a3 / a2 = 4/3
a4 / a3 = 5/4
︰
an / an-1 = n+1 / n
∴ an / a1 = 3/2 × 4/3 × 5/4 × … × n+1 / n = n+1 /2
∵ a1 = 1
∴ an = n+1 /2
(2) Tn = 1² × (1+1)/2 + 2² × (2+1)/2 + 3² × (3+1)/2 + … + n² × (n+1)/2
= 1/2 ( 1² + 2² + 3² + 4² + … + n² ) + 1/2 ( 1³ + 2³ + 3³ + 4³ + … + n³ )
= 1/2 × [ n(n+1)(2n+1) ]/6 + 1/2 × [ n²(n+1)² ]/4
= [ n(n+1)(n+2)(3n+1) ]/24
Sn-1 = n/2 an ——②
①-②
an = n+1/2 an+1 - n/2 an
n+2/2 an = n+1/2 an+1
an+1 / an = n+2 / n+1
用累乘法:
a2 / a1 = 3/2
a3 / a2 = 4/3
a4 / a3 = 5/4
︰
an / an-1 = n+1 / n
∴ an / a1 = 3/2 × 4/3 × 5/4 × … × n+1 / n = n+1 /2
∵ a1 = 1
∴ an = n+1 /2
(2) Tn = 1² × (1+1)/2 + 2² × (2+1)/2 + 3² × (3+1)/2 + … + n² × (n+1)/2
= 1/2 ( 1² + 2² + 3² + 4² + … + n² ) + 1/2 ( 1³ + 2³ + 3³ + 4³ + … + n³ )
= 1/2 × [ n(n+1)(2n+1) ]/6 + 1/2 × [ n²(n+1)² ]/4
= [ n(n+1)(n+2)(3n+1) ]/24
已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)/2)a(n+1)(n∈N*)
对任意正整数n,数列an均满足a1+2a2+3a3+……+nan=n(n+1)(n+2)
设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)
已知数列{an}满足:a1+2a2+3a3+...+nan=(2n-1)*3^n(n属于正整数)求数列{an}得通项公式
已知在数列{an}中,a1=1,nan+1=2(a1+a2+a3+...+an)(n∈N*)(1)求a2,a3,a4(2
在数列{an}中,对任意的正整数n,a1+2a2+3a3+...+nan=n(n+1)(n+2)成立,求an.
在数列{an}中,a1+2a2+3a3+.+nan=n(2n+1)(n属于N)
数列an满足a1+2a2+3a3+...+nan=(n+1)(n+2) 求通项an
已知数列(an)满足a1+2a2+3a3+...+nan=n(n+1)(n+2)求an
已知数列{an}满足a1+2a2+3a3+…+nan=n(n+1)(n+2),则a1+a2+a3+…+an=多少?
重点第三小题 已知在数列{an}中,a1=1,nan+1=2(a1+a2+a3+...+an)(n∈N*)(1)求a2,
已知数列{an}的前n项和为Sn,且a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),求数列{an}通