设g(x)=2e/x,其中e是自然对数的底数,若存在x0属于【1,e】,使得f(xo)大于g(xo)成立,求实数p的取
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 18:03:46
设g(x)=2e/x,其中e是自然对数的底数,若存在x0属于【1,e】,使得f(xo)大于g(xo)成立,求实数p的取
值范围
设f(x)=px-q/x-2lnx,且f(e)=qe-p/e-2(e为自然对数底数)
值范围
设f(x)=px-q/x-2lnx,且f(e)=qe-p/e-2(e为自然对数底数)
∵f(e)=pe-q/e-2lne=pe-q/e-2=qe-p/e-2
∴pe-qe+p/e-q/e=0
∴e(p-q)+(p-q)/e=0
∴(e+1/e)(p-q)=0
∴p-q=0
∴p=q
∴f(x)=px-p/x-2lnx
令F(x)=f(x)-g(x)=px-p/x-2lnx-2e/x=p(x-1/x)-2lnx-2e/x>0,那么
结合当x=x.∈[1,e]时,x-1/x≥0,于是
又∵p(x-1/x)>2lnx+2e/x>0
∴p>0
F‘(x)=p+p/x²-2/x+2e/x²
当x=x.∈[1,e]时,2/x>0且e/x≥1,于是
2e/x²=(2/x)·(e/x)≥2/x
∴-2/x+2e/x²≥0
又∵p+p/x²>0
∴F‘(x)>0
∴F(x)在[1,e]上单调递增
又∵F(1)=-2e<0
∴p使F(e)>0即可,于是
pe-p/e-2lne-2e/e>0
pe-p/e>4
pe²-p>4e
p>4e/(e²-1)
综合上述,p>4e/(e²-1).
∴pe-qe+p/e-q/e=0
∴e(p-q)+(p-q)/e=0
∴(e+1/e)(p-q)=0
∴p-q=0
∴p=q
∴f(x)=px-p/x-2lnx
令F(x)=f(x)-g(x)=px-p/x-2lnx-2e/x=p(x-1/x)-2lnx-2e/x>0,那么
结合当x=x.∈[1,e]时,x-1/x≥0,于是
又∵p(x-1/x)>2lnx+2e/x>0
∴p>0
F‘(x)=p+p/x²-2/x+2e/x²
当x=x.∈[1,e]时,2/x>0且e/x≥1,于是
2e/x²=(2/x)·(e/x)≥2/x
∴-2/x+2e/x²≥0
又∵p+p/x²>0
∴F‘(x)>0
∴F(x)在[1,e]上单调递增
又∵F(1)=-2e<0
∴p使F(e)>0即可,于是
pe-p/e-2lne-2e/e>0
pe-p/e>4
pe²-p>4e
p>4e/(e²-1)
综合上述,p>4e/(e²-1).
设函数f(x)=p(x-1/x)-2Inx,g(x)=2e/x(p是实数,e是自然对数的底数)
设函数f(x)=p(x-1/x)-2Inx,g(x)=2e/x(p是实数,e为自然对数的底数)
设函数f(x)=p(x-1/x)-Inx,g(x)=2e/x(p是实数,e为自然对数的底数)
设函数f(x)=e^x,g(x)=-x²/4,其中e是自然对数的底数
已知函数f(x)=e^x-ax-1(a>0,e为自然对数的底数),若fx大于等于0对任意的x属于R恒成立.求实数a的值.
已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
f(x)=x(e^x-1)-ax^2,a∈R,其中e为自然对数的底数.(II)若当x≥0时,f(x)≥0恒成立,求实数a
已知函数f(X)=(aX^2+X)e^x,其中e是自然对数的底数,a属于R.(1)若f(x)在[
已知常数a (a大于0),e为自然对数的底数,函数f(x)=e^x-x,g(x)=x^2-aInx.
(2014江苏数学高考)已知偶函数f(x)=e^x+e^-x其中e是自然对数的底数,已知a满足:存在x0∈[1,+∞],
设函数f(x)=e^x(e 为自然对数的底数),g(x)=x^2-x,记h(x)=f(x)+g(x) .
设函数f(x)=(e^x+x-a)开方 (a属于R ,e 为自然对数的底数).若存在b属于[0,1] 使