求证:tan^2+cot^2=[2(3+cos4)]/(1-cos4x)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 04:38:34
求证:tan^2+cot^2=[2(3+cos4)]/(1-cos4x)
tan^2x+cot^2x
=sin^2x/cos^2x+cos^2x/sin^2x
=(sin^4x+cos^4x)/(cos^2xsin^2x)
=(sin^4x+cos^4x+2cos^2xsin^2x-2cos^2xsin^2x)/(cos^2xsin^2x)
=[(sin^2x+cos^2x)^2-2cos^2xsin^2x]/(cos^2xsin^2x)
=[1-2cos^2xsin^2x]/(cos^2xsin^2x)
=[1-2cos^2xsin^2x]/(cosxsinx)^2
=[1-2cos^2xsin^2x]/(1/2*sin2x)^2
=4[1-2cos^2xsin^2x]/(sin2x)^2
=4[1-2cos^2xsin^2x]/[(1-cos4x)/2]
=8[1-2cos^2xsin^2x]/(1-cos4x)
=4[2-4cos^2xsin^2x]/(1-cos4x)
=4[2-(sin2x)^2]/(1-cos4x)
=4[2-(1-cos4x)/2]/(1-cos4x)
=4[2-1/2+cos4x)/2]/(1-cos4x)
=4[3/2+cos4x/2]/(1-cos4x)
=2(3+cos4x)/(1-cos4x)
=sin^2x/cos^2x+cos^2x/sin^2x
=(sin^4x+cos^4x)/(cos^2xsin^2x)
=(sin^4x+cos^4x+2cos^2xsin^2x-2cos^2xsin^2x)/(cos^2xsin^2x)
=[(sin^2x+cos^2x)^2-2cos^2xsin^2x]/(cos^2xsin^2x)
=[1-2cos^2xsin^2x]/(cos^2xsin^2x)
=[1-2cos^2xsin^2x]/(cosxsinx)^2
=[1-2cos^2xsin^2x]/(1/2*sin2x)^2
=4[1-2cos^2xsin^2x]/(sin2x)^2
=4[1-2cos^2xsin^2x]/[(1-cos4x)/2]
=8[1-2cos^2xsin^2x]/(1-cos4x)
=4[2-4cos^2xsin^2x]/(1-cos4x)
=4[2-(sin2x)^2]/(1-cos4x)
=4[2-(1-cos4x)/2]/(1-cos4x)
=4[2-1/2+cos4x)/2]/(1-cos4x)
=4[3/2+cos4x/2]/(1-cos4x)
=2(3+cos4x)/(1-cos4x)
怎么证明tan^2x+cot^2x=2(3+cos4x)/1-cos4x
求证:1+sin4θ−cos4θ2tanθ
高一三角恒等1) 证明 tan^2 x + 1/(tan^2 x) = [2(3+2cos4x)]/(1-cos4x)
已知2-根号3是方程x^2-(tanθ+cotθ)x+1=0的一个根,求sin2θ和cos4θ的值
若已知方程x²-(tanθ+cotθ)x+1=0有两个实根,且其中一个根是2-根号3,求cos4
1)求证cotαcosα/cotα-cosα=tan(α/2+π/4)
求证tanα+cotα=2/sin2α
求证(1+tan^2A)/(1+cot^2A)=(1-tanA/1-cotA)^2
求证:cos^2a/[cot(a/2)-tan (a/2)]=1/4sin2a
求证1+sin4θ-cos4θ 1+sin4θ+cos4θ——————= ———————— 2tanθ 1-tan
证明:(1+tan a+cot a)/(1+tan^2 a+tan a)-cot a/(1+ tan^2 a)=sin
1.tanα-cotα=2 则(tanα)^3-(cotα)^3=?