函数f(x),x属于R,若对任意的x,y,都有f(x+y)+f(x-y)=2f(x)f(y),证f(x)为偶函数.
f(x)定义在R上 对任意x.y属于R 都有f(x+y)=f(x)+f(y)判断f(x)的奇偶性
定义在R上的函数f(x),对任意的x.y属于R都有f(x+y)+f(x-y)=2f(x)f(y)且f(x)不等于0.求证
定义在R上的函数f(x),对任意的x,y属于R,都有f(x+y)+f(x-y)=2f(x)*f(y).且f(0)≠0.
函数y=f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),f(xy)=f(x)f(y)恒成立
定义在R上的函数f(x)对任意x,y∈R都有f(x+y)+f(x-y)=2f(x)*f(y),且f(0)≠0,判断f(x
已知函数y=f(x)的定义域为R,且f(x)不恒为0,且对任意x,y属于R,都有f(x+y)=f(x)+f(y)求
已知函数y=f(x)的定义域为R,对任意x,y∈R,均有f(x+y)=f(x)+f(y),且对任意x>0都有f(x)<0
已知函数f(x)定义域为R,对任意x,y属于R有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.
已知函数y=f(x)不恒为0,且对任意x y属于R都有f(x+y)=f(x)+f(y)求证y=f(x)是奇函数
若函数y=f(x)对任意x,y属于R,恒有f(x+y)=f(x)+f(y).(1)求证:y=f(x)是奇函数.(2)若f
若函数y=f(x)对任意x,y属于R,恒有f(x+y)=f(x)+f(y),(1)求y=f(x)是奇函数(2)若f(-3
定义在R上的函数f(x),对任意的x,y属于R有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0