椭圆G:x^2/a^2+y^2/b=1(a>b>0)的两个焦点F1(-c,o)F2(c,o),M是椭圆上的一点,且满足向
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 04:02:36
椭圆G:x^2/a^2+y^2/b=1(a>b>0)的两个焦点F1(-c,o)F2(c,o),M是椭圆上的一点,且满足向量F1M*F2M=0
求离心率e的取值范围:当离心率取得最小值时,点N(0,3)到椭圆上的点最远距离为5√2.求此时椭圆G的方程.
求离心率e的取值范围:当离心率取得最小值时,点N(0,3)到椭圆上的点最远距离为5√2.求此时椭圆G的方程.
因为满足向量F1M*F2M=0 所以可以知道向量F1M垂直F2M,即角F1MF2是直角,一般看到椭圆上一点和焦点的连线,就可以考虑两个方面,一是F1M加F2M为2A,二是想到椭圆的第二定义,这么考虑保你没错的,这题两个方面都要考虑,要结合起来用,然后还要考虑点M坐标中的横坐标范围(在-A到A之间)
所有的圆锥曲线题都可以遵循椭圆的那个思考模式
所有的圆锥曲线题都可以遵循椭圆的那个思考模式
已知F1,F2是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P为椭圆C上一点,且向量PF1垂直向
已知F1,F2分别是椭圆C:x^2/a^2+y^2/b^2=1(a>0,b>0)的左,右焦点,点M是椭圆上一点,且∠F1
已知F1 F2是椭圆C:X^2/a^2 y^2/b^2=1(a>b>0)的两个焦点,P为椭圆C上一点,且PF1⊥PF2.
已知A(1,1)是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1,F2是椭圆上的两焦点,且满足︱AF1
高数椭圆问题已知F1,F2时椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个点.P为椭圆C上一点.且向量P
已知F1,F2是椭圆C x^2/a^2+y^2/b^2=1(a>b)的两个焦点,P是C上一点,PF1、PF2为向量,且互
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点p(3,4),F1、F2为椭圆的两个焦点,且满足PF1⊥P
已知F1、F2是椭圆C:x^2/a^2+y^2/b^2=1的两个焦点,P为C上一点,且向量PF1与向量PF2的积为0.
已知F1、F2为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,M为椭圆上一点,且∠F1MF2 = 12
已知椭圆x^2/a^2+y^2/b^2=1(a>b>c>0)的左右焦点分别为F1.F2,过椭圆上一点P作圆F2:(x-c
已知椭圆x/a+y/b=1(a>b>0)的两焦点为F1,F2,M为椭圆上一点,且∠F1MF2=2a,求证|MF1|*|M
椭圆方程为x^2/a^2+y^2/b^2=1 (大于大于)的两个焦点分别为F1,F2,点P在椭圆C上,且PF1垂直于F1