函数奇偶周期问题1.若定义在R上的函数f(x)满足x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 23:28:44
函数奇偶周期问题
1.若定义在R上的函数f(x)满足x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法正确的是
A.f(x)为奇函数 B.f(x)为偶函数 C.f(x)+1为奇函数 D.f(x)+1为偶函数
2.f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是__
都帮我详细说说,越啰嗦越好,我奇偶周期这块非常烂!
1.若定义在R上的函数f(x)满足x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法正确的是
A.f(x)为奇函数 B.f(x)为偶函数 C.f(x)+1为奇函数 D.f(x)+1为偶函数
2.f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是__
都帮我详细说说,越啰嗦越好,我奇偶周期这块非常烂!
1.
令x1=0,x2=0带入f(x1+x2)=f(x1)+f(x2)+1得
f(0)=f(0)+f(0)+1,所以f(0)=-1
再令x1=x,x2=-x带入得
f(0)=f(x)+f(-x)+1,f(x)+f(-x)=-2所以f(x)不是奇函数
而可知
[f(x)+1]+[f(-x)+1]=0 所以f(x)+1为奇函数
2.
f(x)是定义在R上的以3为周期的偶函数
则可知
f(x)=f(-x)
f(x)=f(x+3)
所以f(-x)=f(3+x)即f(x)=f(3-x)
即f(x)是以3/2为对称轴的
f(2)=0即2时该区间的一个解
根据函数的性质(偶函数,以3为周期,关于3/2对称得)在(0,6)内的解为
2,5,1,4
令x1=0,x2=0带入f(x1+x2)=f(x1)+f(x2)+1得
f(0)=f(0)+f(0)+1,所以f(0)=-1
再令x1=x,x2=-x带入得
f(0)=f(x)+f(-x)+1,f(x)+f(-x)=-2所以f(x)不是奇函数
而可知
[f(x)+1]+[f(-x)+1]=0 所以f(x)+1为奇函数
2.
f(x)是定义在R上的以3为周期的偶函数
则可知
f(x)=f(-x)
f(x)=f(x+3)
所以f(-x)=f(3+x)即f(x)=f(3-x)
即f(x)是以3/2为对称轴的
f(2)=0即2时该区间的一个解
根据函数的性质(偶函数,以3为周期,关于3/2对称得)在(0,6)内的解为
2,5,1,4
若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的
若定义在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确
若定义在R上的函数f(X)满足:对任意X1,X2都有f(X1+X2)=f(X1)+f(X2)+1,则f(X)+1为偶函数
定义在R上的函数y=f(x)若对于任意不等实数x1,x2满足[f(x1)-f(x2)]/(x1-x2)
若函数f(x)在R上满足:对于任意x1,x2属于R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法正确的是:
若定义在R上的函数f(x)满足对任意两个实数x1,x2有f(x1+x2)=f(x1)+f(x2)+1,则正确的是
定义在R上的函数f(x)满足,如果对任意X1,X2∈R,都有f(x1+x2/2)≦1/2,[f(x1),f(x2)],则
已知f(x1+x2)=f(x1)+f(x2)+1在R上成立,求f(x)是奇偶函数或f(x)+1是奇偶函数
若定义在R上的函数f(x)对任意的x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x〉0时,f
已知f(x)是定义在R上的函数,f(1)=1.且对任意x1,x2∈R,总有f(x1+x2)=f(x1)+f(x2)+1恒