以椭圆x^2/20+y^2/16=1的长轴的端点为焦点,且过椭圆焦点,切双曲线的标准方程
以椭圆x^2/16+y^2/9=1的顶点为焦点,且过椭圆焦点的双曲线的标准方程为?
设双曲线以椭圆x^2/25+y^2/16=1长轴的两个端点为焦点,其准线过椭圆的焦点则双曲线的渐近线的斜率为多少?
已知椭圆的标准方程为:x^2/4+y^2/3=1,一个过点P(2,-3)的双曲线的长轴的端点为椭圆的焦点,
1.求以椭圆X方/8+Y方/5=1焦点与长轴的端点分别为顶点与焦点的双曲线方程.
求以椭圆X2/25+Y2/9=1的长轴端点为焦点,并且经过点(4根号2,3)的双曲线的标准方程
求以椭圆x^2/16+y^2/4=1的长轴顶点为焦点,且a=2根号3的双曲线方程
求以椭圆x^2/16+y^2/9=1的焦点为顶点,以其顶点为焦点的双曲线的标准方程
设椭圆与双曲线3x平方-4y平方=48有共同的焦点,且长轴为16,求椭圆的标准方程
求以椭圆x^2/16+y^2/9=1短轴的两个顶点为焦点,且过点A(4,-5)的双曲线的标准方程.
求以椭圆x^2/4+y^2/12=1的焦点为顶点,且以此椭圆在Y上的顶点为焦点的双曲线的标准方程
求以椭圆x^2/16+y^2/25=1的焦点为顶点,以椭圆的顶点为焦点的双曲线方程
双曲线以椭圆x/9+y/25=1的焦点为焦点,它的离心率是椭圆离心率的2倍求双曲线的方程