三角计算题在△ABC中,角A、B、C的对边分别为a、b、c,且acosC,bcosB,ccosA成等差数列 (2)求2s
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 06:17:17
三角计算题
在△ABC中,角A、B、C的对边分别为a、b、c,且acosC,bcosB,ccosA成等差数列
(2)求2sin^2A+cos(A-C)的取值范围
第一小题求的是∠B,求出来是60°
在△ABC中,角A、B、C的对边分别为a、b、c,且acosC,bcosB,ccosA成等差数列
(2)求2sin^2A+cos(A-C)的取值范围
第一小题求的是∠B,求出来是60°
(1)
2bcosB=acosC+ccosA
由正弦定理得2sinBcosB=sinAcosC+sinCcosA
∴2sinBcosB=sin(A+C)
∴2sinBcosB=sinB
∴cosB=1/2
∴B=60度
(2)
2sin^2A+cos(A-C)
=1-cos2A+coa(2A-120)
=1-2sin(2A-60)sin(-60) (和差化积)
=1+2sin60sin(2A-60)
∵B=60度
∴A∈(0,120)
∴2A-60∈(-60,180)
∴sin(2A-60)∈(-sin60,1]
(将sin60的值代入)(A=75时,原式为1)
∴原式的范围是(-1/2,1+3的开根号〕
2bcosB=acosC+ccosA
由正弦定理得2sinBcosB=sinAcosC+sinCcosA
∴2sinBcosB=sin(A+C)
∴2sinBcosB=sinB
∴cosB=1/2
∴B=60度
(2)
2sin^2A+cos(A-C)
=1-cos2A+coa(2A-120)
=1-2sin(2A-60)sin(-60) (和差化积)
=1+2sin60sin(2A-60)
∵B=60度
∴A∈(0,120)
∴2A-60∈(-60,180)
∴sin(2A-60)∈(-sin60,1]
(将sin60的值代入)(A=75时,原式为1)
∴原式的范围是(-1/2,1+3的开根号〕
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
在三角形ABC中,角A,B,C所对的边分别为a,b,c,且acosC,bcosB,ccosA成等差数列.(1)求角B的大
在三角形ABC中,A,B,C的对边分别为a,b,c.且acosC,bcosB,ccosA.成等差数列b=根号3,试求△a
已知a,b,c分别为△ABC的三内角A,B,C的对边,且acosC+ccosA=2bcosB.
三角形ABC的三个内角A,B,C所对的边分别为a、b、c,且acosC,bcosB,ccosA成等差数列,若b=7,c=
在三角形ABC中,角A,B,C所对的边分别为a,b,c且满足2bcosA=根号3(ccosA+acosC)求A的大小
在三角形ABC中,角A,B,C所对的边分别为a,b,c,若根号2bcosA=acosC+ccosA,求:角A的值
在△ABC中,角A.B.C所对的边分别是a.b.c且满足csinA=acosC,且c=2,a+b=2+2×根号2,求三角
已知在非等腰三角形ABC中 角A B C与其所对的边a b c满足条件(2acosC-ccosA)=a*2-c*2
已知在非等腰三角形ABC中 角A B C与其所对的边a b c满足条件(2acosC-ccosA)=a^2-c^2
在三角形ABC中,角ABC所对的边长分别是a、b、c,满足2acosC+ccosA=b,则sinA+sinB
在三角型ABC中,三内角A,B,C所对的边分别是a,b,c,且(2b-c)cosA=acosC:求角A的大小