在△ABC中,a=1,b=2,cosC=1/4,(1)求△ABC的周长(2)求cos(A-C)的值
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 23:46:00
在△ABC中,a=1,b=2,cosC=1/4,(1)求△ABC的周长(2)求cos(A-C)的值
分析:(I)利用余弦定理表示出c的平方,把a,b及cosC的值代入求出c的值,从而求出三角形ABC的周长;
(II)根据cosC的值,利用同角三角函数间的基本关系求出sinC的值,然后由a,c及sinC的值,利用正弦定理即可求出sinA的值,根据大边对大角,由a小于c得到A小于C,即A为锐角,则根据sinA的值利用同角三角函数间的基本关系求出cosA的值,然后利用两角差的余弦函数公式化简所求的式子,把各自的值代入即可求出值.
(I)∵c^2=a^2+b^2-2abcosC=1+4-4×1/4=4,
∴c=2,
∴△ABC的周长为a+b+c=1+2+2=5.
(II)∵cosC= 1/4,∴sinC=√(1-cos^2C=) =√(1-(1/4)^2)= (√15)/4.
∴sinA= asinC/c= √15/4/2= (√15)/8.
∵a<c,∴A<C,故A为锐角.则cosA=√(1-(15/8)^2)= 7/8,
∴cos(A-C)=cosAcosC+sinAsinC= 7/8× 1/4+ √15/8× √15/4= 11/16.
(II)根据cosC的值,利用同角三角函数间的基本关系求出sinC的值,然后由a,c及sinC的值,利用正弦定理即可求出sinA的值,根据大边对大角,由a小于c得到A小于C,即A为锐角,则根据sinA的值利用同角三角函数间的基本关系求出cosA的值,然后利用两角差的余弦函数公式化简所求的式子,把各自的值代入即可求出值.
(I)∵c^2=a^2+b^2-2abcosC=1+4-4×1/4=4,
∴c=2,
∴△ABC的周长为a+b+c=1+2+2=5.
(II)∵cosC= 1/4,∴sinC=√(1-cos^2C=) =√(1-(1/4)^2)= (√15)/4.
∴sinA= asinC/c= √15/4/2= (√15)/8.
∵a<c,∴A<C,故A为锐角.则cosA=√(1-(15/8)^2)= 7/8,
∴cos(A-C)=cosAcosC+sinAsinC= 7/8× 1/4+ √15/8× √15/4= 11/16.
设△ABC中的三个内角A,B,C所对的边分别是a,b,c,已知a=1,b=2,cosC=1/4求ABC周长 求cos(A
在三角形ABC中,内角A,B,C的对边分别是a,b,c,已知a=1,b=2,且cosC=1/4,求三角形的周长,cos(
已知△ABC的三个锐角A,B,C满足A+C=2B,1/cosA +1/cosC=-√2/cosB,求cos(A/2-C/
已知△ABC的三个内角A、B、C满足A+C=2B,且1/cosA+1/cosC=-根号2/cosB,求cos[(A-c)
已知在三角形ABC中,B=60,且1/cosA+1/cosC=-2根号2,求cos(A-C)的值
已知在△ABC中,角A,B,C的对边分别是a,b,c,且cos(A+B)/2=1-cosC,
三角形ABC中,A+C=2B,且1/cosA+1/cosC=-√2/cosB,求cos(A-C)/2的值
三角形ABC中 a(cosB+cosC)=b+c (1)求角A=2分之π (2)若a=2求△ABC周长的取值范围
在△abc中,角a,b,c的对边分别为a,b,c,已知sinc +cosc = 1 -sin(c/2) (1)求sinc
在三角形ABC中,角A,B,C所对的边分别为a,b,c,已知a=1,b=2,cosc=1/4.求cos(A-C).已知c
已知三角形ABC的三个内角A,B,C满足:A+C=2B,1/cosA+1/cosC=-√2/cosB,求cos(A-C)
在三角形ABC中,内角A,B,c的对边a,b,c.已知(2c-a)/b=(cosA-2cosC)/cosB.1、求sin