(2007•三明)如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/08 16:46:17
(2007•三明)如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.
(1)求∠OAC的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?
(1)求∠OAC的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?
(1)∵∠AOC=60°,AO=AC,
∴△AOC是等边三角形,
∴∠OAC=60°.
(2)∵CP与⊙A相切,
∴∠ACP=90°,
∴∠APC=90°-∠OAC=30°;
又∵A(4,0),
∴AC=AO=4,
∴PA=2AC=8,
∴PO=PA-OA=8-4=4.
(3)①过点C作CP1⊥OB,垂足为P1,延长CP1交⊙A于Q1;
∵OA是半径,
∴
OC=
OQ1,
∴OC=OQ1,
∴△OCQ1是等腰三角形;
又∵△AOC是等边三角形,
∴P1O=
1
2OA=2;
②过A作AD⊥OC,垂足为D,延长DA交⊙A于Q2,CQ2与x轴交于P2;
∵A是圆心,
∴DQ2是OC的垂直平分线,
∴CQ2=OQ2,
∴△OCQ2是等腰三角形;
过点Q2作Q2E⊥x轴于E,
在Rt△AQ2E中,
∵∠Q2AE=∠OAD=
1
2∠OAC=30°,
∴Q2E=
1
2AQ2=2,AE=2
3,
∴点Q2的坐标(4+2
3,-2);
在Rt△COP1中,
∵P1O=2,∠AOC=60°,
∴CP1=2
3,
∴C点坐标(2,2
3);
设直线CQ2的关系式为y=kx+b,则
∴△AOC是等边三角形,
∴∠OAC=60°.
(2)∵CP与⊙A相切,
∴∠ACP=90°,
∴∠APC=90°-∠OAC=30°;
又∵A(4,0),
∴AC=AO=4,
∴PA=2AC=8,
∴PO=PA-OA=8-4=4.
(3)①过点C作CP1⊥OB,垂足为P1,延长CP1交⊙A于Q1;
∵OA是半径,
∴
OC=
OQ1,
∴OC=OQ1,
∴△OCQ1是等腰三角形;
又∵△AOC是等边三角形,
∴P1O=
1
2OA=2;
②过A作AD⊥OC,垂足为D,延长DA交⊙A于Q2,CQ2与x轴交于P2;
∵A是圆心,
∴DQ2是OC的垂直平分线,
∴CQ2=OQ2,
∴△OCQ2是等腰三角形;
过点Q2作Q2E⊥x轴于E,
在Rt△AQ2E中,
∵∠Q2AE=∠OAD=
1
2∠OAC=30°,
∴Q2E=
1
2AQ2=2,AE=2
3,
∴点Q2的坐标(4+2
3,-2);
在Rt△COP1中,
∵P1O=2,∠AOC=60°,
∴CP1=2
3,
∴C点坐标(2,2
3);
设直线CQ2的关系式为y=kx+b,则
如图,在平面直角坐标系xOy,点A的坐标为(4,0),以点A为圆心,4为半径作圆与x轴交与O、B两点,OC为弦,∠AOC
如图,在平面直角坐标系xOy中,点A坐标为(2,1),以A为圆心,2为半径的圆与x轴交于M,N两点.
如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x
如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与X轴交于A、B两点,过A作直线l与x
如图,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,5为半径作圆A,交x轴于B,C两点,交y轴于点D,E
如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为,直线与坐标轴分别交于A、C两点,点B的坐标为(4,1),⊙
如图,在平面直角坐标系中,O为坐标原点,圆c的圆心坐标为(2,-2),半径为根号2,函数y=-x+2的图像与x轴交于点A
如图在平面直角坐标系xOy中以O(2,根号3)为圆心的○O与y轴切于点A,与x轴交于A,B两点(1)判断并证明ABCO的
如图,在平面直角坐标系xOy中,以点M(0,1)为圆心,以2长为半径作圆M交x轴于点A,B两点,交y轴于C,D两点,连接
如图,在平面直角坐标系中,以O为圆心,半径为2的圆与y轴交于点A.
如图,在平面直角坐标系中,以坐标原点O为圆心的⊙O分别交x轴、y轴于A、C和B、D,点M(4,3)为⊙O上一点
如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与Y轴交于点A,点P(4,2)是圆O外一点