已知数列{an}的前n项和为Sn,且满足:a1=a(a≠0),an+1=rSn (n∈N*,r∈R,r≠-1)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 09:57:57
已知数列{an}的前n项和为Sn,且满足:a1=a(a≠0),an+1=rSn (n∈N*,r∈R,r≠-1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断:对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差数列,并证明你的结论.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断:对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差数列,并证明你的结论.
(I)由已知an+1=rSn,则an+2=rSn+1,两式相减得
an+2-an+1=r(Sn+1-Sn)=ran+1
即an+2=(r+1)an+1
又 a2=ra1=ra
∴当r=0时,数列{an}为:a,0,0,…;
当r≠0时,由r≠-1,a≠0,∴an≠0
由an+2=(r+1)an+1得数列{an}从第二项开始为等比数列
∴当n≥2时,an=r(r+1)n-2a
综上数列{an}的通项公式为an=
a,n=1
r(r+1)n−2a ,n≥2
(II) 对于任意的m∈N*,且m≥2,am+1,am,am+2成等差数列,理由如下:
当r=0时,由(I)知,an=
a,n=1
0,n≥2
∴对于任意的m∈N*,且m≥2,am+1,am,am+2成等差数列;
当r≠0,r≠-1时
∵Sk+2=Sk+ak+1+ak+2,Sk+1=Sk+ak+1
若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,则2Sk=Sk+1+Sk+2
∴2Sk=2Sk+ak+2+2ak+1,即ak+2=-2ak+1
由(I)知,a2,a3,…,an,…的公比r+1=-2,于是
对于任意的m∈N*,且m≥2,am+1=-2am,从而am+2=4am,
∴am+1+am+2=2am,即am+1,am,am+2成等差数列
综上,对于任意的m∈N*,且m≥2,am+1,am,am+2成等差数列.
an+2-an+1=r(Sn+1-Sn)=ran+1
即an+2=(r+1)an+1
又 a2=ra1=ra
∴当r=0时,数列{an}为:a,0,0,…;
当r≠0时,由r≠-1,a≠0,∴an≠0
由an+2=(r+1)an+1得数列{an}从第二项开始为等比数列
∴当n≥2时,an=r(r+1)n-2a
综上数列{an}的通项公式为an=
a,n=1
r(r+1)n−2a ,n≥2
(II) 对于任意的m∈N*,且m≥2,am+1,am,am+2成等差数列,理由如下:
当r=0时,由(I)知,an=
a,n=1
0,n≥2
∴对于任意的m∈N*,且m≥2,am+1,am,am+2成等差数列;
当r≠0,r≠-1时
∵Sk+2=Sk+ak+1+ak+2,Sk+1=Sk+ak+1
若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,则2Sk=Sk+1+Sk+2
∴2Sk=2Sk+ak+2+2ak+1,即ak+2=-2ak+1
由(I)知,a2,a3,…,an,…的公比r+1=-2,于是
对于任意的m∈N*,且m≥2,am+1=-2am,从而am+2=4am,
∴am+1+am+2=2am,即am+1,am,am+2成等差数列
综上,对于任意的m∈N*,且m≥2,am+1,am,am+2成等差数列.
已知数列{an},其首项为a1(a1≠0且为常数),前n项和Sn满足:对任意的r,t∈N,都有Sr:St=r^2:t^2
已知公差不为0的等差数列{an}的首项a1=a(a∈R),设数列{an}的前n项和为Sn,且a1、a2、a4恰为等比数列
数列{an}的前n项和为Sn,已知A1=a,An+1=Sn+3^n(三的n次方),n∈N*
已知数列{an}满足a1=1,an+1=Sn+(n+1)(n∈N*),其中Sn为{an}的前n项和,
设数列{an}的前n项和为sn.已知a1=a,an+1=sn-3n,n∈N*,设bn=sn-3n,且bn≠0
等比数列{An}的前n项和为Sn,已知对任意的n∈N+点(n,Sn)均在函数y=b^x+r(b>0)且b≠1,b,r均为
已知数列{an}的前n项和为Sn,且(a-1)Sn=a(an-1)(a>0,n∈N*)
已知数列an的前n项和为Sn,且满足an+SnSn-1=0(n>=2,n∈N*),a1=1/2.
已知数列an的前n项和为sn,且满足sn=n²an-n²(n-1),a1=1/2
1已知数列{an}前n项和为Sn,a1=1,n*S(n+1)-(n+1)*Sn=n²+cn(c∈R,n∈N*)
等比数列{An}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn),均在函数y=b^x+r(b>0且b≠1,b,r均
已知数列{an}满足a1=1,an-a(n+1)=ana(n+1),数列{an}的前n项和为Sn.(1)求证:{1/an