数列难题,若F(X)=(3X+2)/(X+2) 满足A1=0.5 A(n+1)=F(An) B(n)=1/(An +1)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 19:48:35
数列难题,
若F(X)=(3X+2)/(X+2) 满足A1=0.5 A(n+1)=F(An) B(n)=1/(An +1) 求Bn的通项公式
若F(X)=(3X+2)/(X+2) 满足A1=0.5 A(n+1)=F(An) B(n)=1/(An +1) 求Bn的通项公式
a(n+1)=(3*an+2)/(an+2)上式两边同加1的a(n+1)+1=(3*an+2)/(an+2)+1a(n+1)+1=4*(an+1)/an+2两边取倒数1/(a(n+1)+1)=(an+2)/4*(an+1) =(an+1+1)/4*(an+1) =1/4+(1/4)*(1/an+1)∵bn=1/(an+1)∴b(n+1)=1/4+(1/4)*bn上式可化为b(n+1)-1/3=(1/4)*(bn-1/3)所以数列{bn-1/3}是公比为1/4的等比数列bn-1/3=(b1-1/3)*(1/4)^(n-1) =(1/(0.5+1)-1/3)*(1/4)^(n-1) =(1/3)*(1/4)^(n-1)bn=(1/3)*(1/4)^(n-1)+1/3
已知函数f(x)=x/根号下(1+x^2),(x>0),数列an满足a1=f(x),a(n+1)=f(an)
已知函数f(x)=(2x+3)/3x,数列{an}满足a1=1,an+1=f(1/an),n∈N*.
已知函数f(x)=3x/2x+3,数列{an}满足a1=1,an+1=f(an),n∈N*
已知函数f(x)=ln(1+x)-x数列{an}满足a1=1/2,ln2+ln a(n+1)=a(n+1)an+f(a(
已知函数f(x)=(x^3-x) /3,数列{an}满足a1>=1,an+1>=f'(an+1)证明an>=(2^n)-
已知函数f(x)=x/(3x+1),数列{an}满足a1=1,an+1=f(an)(n∈N*),求证:数列{1/an}是
已知函数f(x)=2x/(x+1),数列{an}满足a1=4/5,a(n+1)=f(an),bn=1/an-1.
已知函数f(X)=X/(3x+1),数列{an}满足a1=1,a(n+1)=f(an),证明数列{1/an}是等差数列
已知函数f(x)=x/(3x+1),数列an满足a1=1,a(n+1)=f(an)(n∈N*)
已知函数f(x)=x/x+3,数列an满足a1=1,a(n+1)=f(an) (n属于N+)
设函数f(x)=(2x+1)/x [x>0] 数列an满足a1=1,an=f[1/a(n-1)]
已知f(x)=(3x+2)/2x,数列{an}满足a1=1,a(n+1)=f(1/an)(n属于N*)求数列{an}的通