关于线性代数的证明问题,求教
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/09 09:32:50
关于线性代数的证明问题,求教
If the argumengted matrices of two linear systems are row equivalent,then the two systems have the same solution set.In other words,elementary row operations do not change solution set.
elementary row operations:replacement;interchange;scaling
即证明矩阵的初等行变换不改变矩阵的列的线性关系,
If the argumengted matrices of two linear systems are row equivalent,then the two systems have the same solution set.In other words,elementary row operations do not change solution set.
elementary row operations:replacement;interchange;scaling
即证明矩阵的初等行变换不改变矩阵的列的线性关系,
时间有限,大略说下.
假设原矩阵A各列有线性关系,记为(*):Ai=k1A1+k2A2+k3A3+...k(i-1)A(i-1)+k(i+1)A(i+1)+...+knAn,其中ki为系数,Ai表示A的各列
对A进行若干次初等行变换,实质上就是对A左乘一系列初等矩阵,这些初等矩阵的乘积可以看成一个可逆矩阵P,即
变换后的矩阵B=PA,将B和A按列分块,得到
[B1,B2,...,Bi-1,Bi,Bi+1,...,Bn]=P[A1,A2,...,Ai-1,Ai,Ai+1,...An]
则,Bi=PAi (i=1,2,...,n)
对于(*):Ai=k1A1+k2A2+k3A3+...k(i-1)A(i-1)+k(i+1)A(i+1)+...+knAn,统一左乘P,得到
PAi=k1PA1+k2PA2+k3PA3+...k(i-1)PA(i-1)+k(i+1)PA(i+1)+...+knPAn,
也就就是Bi=k1B1+k2B2+k3B3+...k(i-1)B(i-1)+k(i+1)B(i+1)+...+knBn,
上式说明经过初等行变换后,新矩阵的列之间的线性关系保持不变.
假设原矩阵A各列有线性关系,记为(*):Ai=k1A1+k2A2+k3A3+...k(i-1)A(i-1)+k(i+1)A(i+1)+...+knAn,其中ki为系数,Ai表示A的各列
对A进行若干次初等行变换,实质上就是对A左乘一系列初等矩阵,这些初等矩阵的乘积可以看成一个可逆矩阵P,即
变换后的矩阵B=PA,将B和A按列分块,得到
[B1,B2,...,Bi-1,Bi,Bi+1,...,Bn]=P[A1,A2,...,Ai-1,Ai,Ai+1,...An]
则,Bi=PAi (i=1,2,...,n)
对于(*):Ai=k1A1+k2A2+k3A3+...k(i-1)A(i-1)+k(i+1)A(i+1)+...+knAn,统一左乘P,得到
PAi=k1PA1+k2PA2+k3PA3+...k(i-1)PA(i-1)+k(i+1)PA(i+1)+...+knPAn,
也就就是Bi=k1B1+k2B2+k3B3+...k(i-1)B(i-1)+k(i+1)B(i+1)+...+knBn,
上式说明经过初等行变换后,新矩阵的列之间的线性关系保持不变.