设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明:
设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明:
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明
证明:假设f(x)在[0,1]上 具有一阶连续导数 f(0)=f(1)=0
有关大学定积分的问题设f(x)在[0,2]上具有一阶连续导数,|f′(x)|≤1,x∈[0,2]且f(0)=f(2)=0
设 f(x)在〔a,b〕上具有一阶连续导数,且|f‘ (x)|≤M,f(a)=f(b)=0,求证∫(a,b)f(x)dx
设f(x)在[0,1]上有连续一阶导数,在(0,1)内二阶可导.
设f(x)在[0,1]上具有一阶连续导数,f(0)=0,证明至少存在一点ξ∈[0,1]使f(ξ)的导数=2∫(0,1)f
设曲线y=f(x)在原点与X轴相切,函数f(x)具有连续的二阶导数,且x≠0时,f的一阶导数不等于0,证明该曲线在原点处
设f(x)在[0,+∞)上有连续的一阶导数,且lim(x→∞)f'(x)=a,证lim(x→∞)f(x)=∞
求大神证明:设f(x)在区间[a,b]上有一阶连续导数,记max|f(x)|=M(x归属于[a,b]),试证M
高等数学 设f(x)在x=e处有连续的一阶导数,f'(e)=-2(e^-1)则lim(x→0+
设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt