有关大学定积分的问题设f(x)在[0,2]上具有一阶连续导数,|f′(x)|≤1,x∈[0,2]且f(0)=f(2)=0
有关大学定积分的问题设f(x)在[0,2]上具有一阶连续导数,|f′(x)|≤1,x∈[0,2]且f(0)=f(2)=0
求高数一道定积分题设f(x)具有一阶连续导数,且f(0)=0.f'(0)不等于0.则极限x趋于0‖0到x^2(f(t)d
积分应用 设f (x)在[0,1]上具有二阶连续导数,若f ( π ) = 2,∫ [ f (x)+ f (x)的二阶导
已知曲线积分 ∫L2xyf(x)dx+[f(x)+x^2]dy的值与路径无关,其中f(x)具有一阶连续导数,且f(0)=
设函数f(x)具有一阶连续导数 且f(0)=0 若曲线积分∫[f(x)-e^x]sinydx-f(x)cosydy与路径
设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明:
设f(x)在[0,1]上具有一阶连续导数,f(0)=0,证明至少存在一点ξ∈[0,1]使f(ξ)的导数=2∫(0,1)f
设f(x)具有一阶连续导数,f(0)=0,f'(0)=2,求了lim(x→0)f(1-cosx)/tan(x^2)
设函数f(x)有一阶连续导数,又a(a>0)为函数F(x)=定积分x-0(x^2-t^2)f‘(t)dt的驻点.试证:在
设 f(x)在〔a,b〕上具有一阶连续导数,且|f‘ (x)|≤M,f(a)=f(b)=0,求证∫(a,b)f(x)dx
证明:假设f(x)在[0,1]上 具有一阶连续导数 f(0)=f(1)=0
设函数f(x)在[0,1]上具有连续导数,且f(0)+f(1)=0,证明:|∫ f(x)dx|≤1÷2×∫ |f’ (x