数列 an=2n-1 设bn=an/3^n 求和tn=b1+..bn?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 05:44:33
数列 an=2n-1 设bn=an/3^n 求和tn=b1+..bn?
Tn=1/3+3/9+5/27+.+(2n-1)/3^n -----------(1)
(1)×1/3
1/3Tn=1/9+3/27+5/81+.+(2n-3)/3^n+(2n-1)/3^(n+1) ----(2)
(1)-(2):
2/3Tn=1/3+2/9+2/27+.+2/3^n-(2n-1)/3^(n+1)
=1/3+2/9[1-1/3^(n-1)]/(1-1/3)-(2n-1)/3^(n+1)
=1/3+1/3-1/3^n-(2n-1)/3^(n+1)
=2/3-(2n+2)/3^(n+1)
∴ Tn=1-(n+1)/3^n
(1)×1/3
1/3Tn=1/9+3/27+5/81+.+(2n-3)/3^n+(2n-1)/3^(n+1) ----(2)
(1)-(2):
2/3Tn=1/3+2/9+2/27+.+2/3^n-(2n-1)/3^(n+1)
=1/3+2/9[1-1/3^(n-1)]/(1-1/3)-(2n-1)/3^(n+1)
=1/3+1/3-1/3^n-(2n-1)/3^(n+1)
=2/3-(2n+2)/3^(n+1)
∴ Tn=1-(n+1)/3^n
数列 an=2n-1 设bn=an/3^n 求和tn=b1+..bn?
an=3*2^(n-1),设bn=n/an求数列bn的前n项和Tn
设bn=(an+1/an)^2求数列bn的前n项和Tn
已知等比数列{An}的前n项之和Sn=2^n+p 数列{Bn}满足Bn=log2An,求和:Tn=(b1)^2-(b2)
错位相减法,数列求和an=n+1,bn=an/2^n-1,求数列bn的前n项和Tn.一轮复习,
数列an的前n项和为Sn,Sn=2an-1,数列bn满足b1=2,bn+1=an+bn.求数列bn的前n项和Tn
设bn=3/(anan+1),an=2n-51,tn是数列{bn}的前n项和,求使得Tn
设公比大于0的数列an的前n项和是Sn,a=1,S4=5S2,数列bn的前n项合为Tn,满足b1=1,Tn=n^2bn,
数列{an}的前n项和为Sn=3an+2 设bn=n 求数列{an·bn}的和Tn
已知等差数列{an}中,an=2n-24 若数列{bn}满足an=log2bn,设Tn=b1b2...bn,且Tn=1,
已知数列an=4n-2和bn=2/4^(n-1),设Cn=an/bn,求数列{Cn}的前n项和Tn
数列an,满足Sn=n^2+2n+1,设bn=an*2^n,求bn的前n项和Tn