已知x属于[√2,8],求函数f(x)=(log2(x/4))(log2 (x/2))的最大值和最小值
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 21:38:34
已知x属于[√2,8],求函数f(x)=(log2(x/4))(log2 (x/2))的最大值和最小值
由f(x)=[log2(x/4)][log2(x/2)]
=[log2(x)-log2(4)][log2(x)-log2(2)]
=[log2(x)-2][log2(x)-1]
=log²2(x)-3log2(x)+2
=[log2(x)-3/2)²-9/4+2
=[log2(x)-3/2]²-1/4
∵x∈[√2,8],且底a=2>0,
∴f(x)在[√2,8]上是增函数,
(1)当x=3/2时,f(x)最小值ymin=-1/4.
(2)当x=8时,f(x)的最大值ymax=[log2(8)-3/2]²-1/4
=(3-3/2)²-1/4
=2.
=[log2(x)-log2(4)][log2(x)-log2(2)]
=[log2(x)-2][log2(x)-1]
=log²2(x)-3log2(x)+2
=[log2(x)-3/2)²-9/4+2
=[log2(x)-3/2]²-1/4
∵x∈[√2,8],且底a=2>0,
∴f(x)在[√2,8]上是增函数,
(1)当x=3/2时,f(x)最小值ymin=-1/4.
(2)当x=8时,f(x)的最大值ymax=[log2(8)-3/2]²-1/4
=(3-3/2)²-1/4
=2.
已知x属于[√2,8],求函数f(x)=(log2(x/4))(log2 (x/2))的最大值和最小值
已知√2≤x≤8,求函数f(x)=(log2 x/2).(log2 4/x)的最大值和最小值
已知根号2≤x≤8,求函数f(x)=(log2 x/2)(log2 4/x)的最大值和最小值
已知根号1≤x≤8,求函数f(x)=(log2 x/2)(log2 4/x)的最大值和最小值
已知函数f(x)=[log2(x/2)]*[log2(x/4)],x属于[根号2,4].求该函数的最大值和最小值,并求取
已知√2≤x≤8,求函数f(x)=(log2 x/2).(log2 4/x)的最大值和最小值
已知函数f(x)=log2的平方 x-2log2 x+3的定义域为[1,4],求函数f(x)的最大值和最小值.
已知x满足根号2≦x≦8求函数f(x)=(log2,x-2)log2,2/x的最大值和最小值
已知-3≤log1/2x≤-1/2,求函数f(x)=(log2 x/2)(log2 x/4)的最大值和最小值,并求出对应
已知-3≤log0.5x≤-3/2,求函数f(x)=log2(x/2·log2 x/4)的最大值和最小值
求函数y=log2^x/2*logx^x/4,x属于[1,8]的最大值和最小值
求函数y=log2(x/2) *log2(x/4)(x∈[1,8])的最大值和最小值