设x1,x2,…,x7为自然数,且x1<x2<x3<…<x6<x7,又x1+x2+…+x7=159,则x1+x2+x3的
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 16:50:37
设x1,x2,…,x7为自然数,且x1<x2<x3<…<x6<x7,又x1+x2+…+x7=159,则x1+x2+x3的最大值为______.
∵x1,x2,…,x7为自然数,且x1<x2<x3<…<x6<x7,
∴159=x1+x2+…+x7≥x1+(x1+1)+(x1+2)+…+(x1+6)=7x1+21,
∴x1≤19
5
7,
∴x1的最大值为19;
又∵19+x2+x3+…+x7=159,
∴140≥x2+(x2+1)+(x2+2)+…+(x2+5)=6x2+15,
∴x2≤20
5
6,∴x2的最大值为20,
当x1,x2都取最大值时,有120=x3+x4+…+x7≥x3+(x3+1)+(x3+4)=5x3+10,
∴x3≤22,
∴x3最大值为22.
∴x1+x2+x3的最大值为19+20+22=61.
∴159=x1+x2+…+x7≥x1+(x1+1)+(x1+2)+…+(x1+6)=7x1+21,
∴x1≤19
5
7,
∴x1的最大值为19;
又∵19+x2+x3+…+x7=159,
∴140≥x2+(x2+1)+(x2+2)+…+(x2+5)=6x2+15,
∴x2≤20
5
6,∴x2的最大值为20,
当x1,x2都取最大值时,有120=x3+x4+…+x7≥x3+(x3+1)+(x3+4)=5x3+10,
∴x3≤22,
∴x3最大值为22.
∴x1+x2+x3的最大值为19+20+22=61.
设x1,x2,…,x7为自然数,且x1<x2<x3<…<x6<x7,又x1+x2+…+x7=159,则x1+x2+x3的
设x1,x2…x7为正整数,且x1<x2…<x7,且x1+x2...+x7=159,求x1+x2+x3的最大值
设x1~x7是自然数,且x1<x2<...<x7,x1+x2=x3,x2+x3=x4,x3+x4=x5,x4+x5=x6
设x1,x2,x3,x4,x5,x6,x7是自然数,且x1<x2<x3<x4<x5<x6<x7,x1+x2=x3,x2+
设x1,x2,x3,x4,x5,x6,x7是自然数,且x1
设X1,X2X,X3,X4,X5,X6,X7为自然数,相加得2010,求X1+X2+X3=?
有整数x1,x2,x3,x4,x5,x6,x7.x1
x1,x2,x3,x4,x5,x6,x7为自然数,并且x1
设x1,x2.x7为自然数,且x1
已知x1+x2+x3+x4+x5+x6+x7=2010,且x1+x2=x3,x2+x3=x4,x3+x4=x5,x5+x
已知有一列数x1,x2,x3,...,x7,且x1=8,x7=5832,x1/x2=x2/x3=x3/x4=x4/x5=
已知X1 X2 X3 X4 X5 的平均数为a X6 X7 X8.X15的平均数为b 则X1 X2 X3 X4 X5 X