作业帮 > 数学 > 作业

已知一元二次方程7x*x-(k+13)-k+2=0的两实数根满足0

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:12:26
已知一元二次方程7x*x-(k+13)-k+2=0的两实数根满足0
首先,函数有两个不同的实数根:
判别式:(k+13)²+28(k-2)>0………………(1)
其次两根分别在(0,1)和(1,2)之间
由函数开口向上,可以判定:
f(0)>0:-k+2>0…………………………(2)
f(1)<0:7-(k+13)-k+2<0………………(3)
f(2)>0:28-2(k+13)-k+2>0……………(4)
解不等式(1):
k²+54k+113>0,k>2√154-27≈-2.2;或k<-2√154-27≈-51.8
解不等式(2):
k<2
解不等式(3):
-4-2k<0,2+k>0,k>-2
解不等式(4):
4-3k>0,k<4/3
综上,-2<k<4/3