高中数学。已知a>0,函数f(x)=ax²-x,g(x)=lnx.(1)若a=1/2,求函数y=f(x)-2g
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/09 01:02:35
高中数学。已知a>0,函数f(x)=ax²-x,g(x)=lnx.(1)若a=1/2,求函数y=f(x)-2g(x)的极值。(2)求实数a的取值集合,使f(x)≥g(ax)成立
1)a=1/2, y=1/2x²-x-2lnx
y'=x-1-2/x=(x²-x-2)/x=(x-2)(x+1)/x
定义域为x>0, 因此有唯一极值点x=2,
它为极小值点
极小值y(2)=2-2-2ln2=-2ln2
2) 记h(x)=f(x)-g(ax)=ax²-x-lnax, 要使h(x)>=0在x>0时恒成立
h'(x)=2ax-1-1/x=(2ax²-x-1)/x
因为a>0, 故2ax²-x-1=0必有一正根一负根,正根t即为h(x)的最小值点
为t=[1+√(1+8a)]/(4a), 2at²-t-1=0
h(t)=at²-t-lnat=t+1-t-lnat=1-lnat>=0, 得:at
y'=x-1-2/x=(x²-x-2)/x=(x-2)(x+1)/x
定义域为x>0, 因此有唯一极值点x=2,
它为极小值点
极小值y(2)=2-2-2ln2=-2ln2
2) 记h(x)=f(x)-g(ax)=ax²-x-lnax, 要使h(x)>=0在x>0时恒成立
h'(x)=2ax-1-1/x=(2ax²-x-1)/x
因为a>0, 故2ax²-x-1=0必有一正根一负根,正根t即为h(x)的最小值点
为t=[1+√(1+8a)]/(4a), 2at²-t-1=0
h(t)=at²-t-lnat=t+1-t-lnat=1-lnat>=0, 得:at
高中数学。已知a>0,函数f(x)=ax²-x,g(x)=lnx.(1)若a=1/2,求函数y=f(x)-2g
已知函数f(x)=lnx,g(x)=ax^2+3X (1)若a=2,求h(x)=f(x)-g(x)
已知f(x)+f'(1)-lnx/x=1,g(x)=ax-2f(x),a为正常数求函数y=f(x)的表达式若函数g(x)
已知函数g(x)=x/lnx,f(x)=g(x)-ax(a>0)
已知函数f(x)=lnx,g(x)=ax^2-x(a≠0)
已知a>0,函数f(x)=ax^2-x,g(x)=lnx
已知函数f(x)=1/2ax^2+2x,g(x)=lnx,【高中数学】高手帮忙,大后天高考
已知函数f(x)=lnx-ax,g(x)=f(x)+f'(x),其中a>0
已知函数f(x)=x-2/x,g(x)=a(2-lnx),a>0,
已知函数f(x)=lnx+a/x-2 g(x)=lnx+2x
已知函数f(x)=lnx,g(x)=1/2ax^2+2x.若函数h(x)=f(x)-g(x)在[1,4]单调递减,求a的
已知函数f(x)=lnx,g(x)=1/2ax^2+2x,a≠0...